2 Search Results for "Karayel, Emin"


Document
RANDOM
An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

Authors: Emin Karayel

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In 2020 Błasiok (ACM Trans. Algorithms 16(2) 3:1-3:28) constructed an optimal space streaming algorithm for the cardinality estimation problem with the space complexity of O(ε^{-2} ln(δ^{-1}) + ln n) where ε, δ and n denote the relative accuracy, failure probability and universe size, respectively. However, his solution requires the stream to be processed sequentially. On the other hand, there are algorithms that admit a merge operation; they can be used in a distributed setting, allowing parallel processing of sections of the stream, and are highly relevant for large-scale distributed applications. The best-known such algorithm, unfortunately, has a space complexity exceeding Ω(ln(δ^{-1}) (ε^{-2} ln ln n + ln n)). This work presents a new algorithm that improves on the solution by Błasiok, preserving its space complexity, but with the benefit that it admits such a merge operation, thus providing an optimal solution for the problem for both sequential and parallel applications. Orthogonally, the new algorithm also improves algorithmically on Błasiok’s solution (even in the sequential setting) by reducing its implementation complexity and requiring fewer distinct pseudo-random objects.

Cite as

Emin Karayel. An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 35:1-35:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{karayel:LIPIcs.APPROX/RANDOM.2023.35,
  author =	{Karayel, Emin},
  title =	{{An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{35:1--35:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.35},
  URN =		{urn:nbn:de:0030-drops-188607},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.35},
  annote =	{Keywords: Distinct Elements, Distributed Algorithms, Randomized Algorithms, Expander Graphs, Derandomization, Sketching}
}
Document
Formalization of Randomized Approximation Algorithms for Frequency Moments

Authors: Emin Karayel

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
In 1999 Alon et al. introduced the still active research topic of approximating the frequency moments of a data stream using randomized algorithms with minimal space usage. This includes the problem of estimating the cardinality of the stream elements - the zeroth frequency moment. Higher-order frequency moments provide information about the skew of the data stream which is, for example, critical information for parallel processing. (The k-th frequency moment of a data stream is the sum of the k-th powers of the occurrence counts of each element in the stream.) They introduce both lower bounds and upper bounds on the space complexity of the problems, which were later improved by newer publications. The algorithms have guaranteed success probabilities and accuracies without making any assumptions on the input distribution. They are an interesting use case for formal verification because their correctness proofs require a large body of deep results from algebra, analysis and probability theory. This work reports on the formal verification of three algorithms for the approximation of F₀, F₂ and F_k for k ≥ 3. The results include the identification of significantly simpler algorithms with the same runtime and space complexities as the previously known ones as well as the development of several reusable components, such as a formalization of universal hash families, amplification methods for randomized algorithms, a model for one-pass data stream algorithms or a generic flexible encoding library for the verification of space complexities.

Cite as

Emin Karayel. Formalization of Randomized Approximation Algorithms for Frequency Moments. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 21:1-21:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{karayel:LIPIcs.ITP.2022.21,
  author =	{Karayel, Emin},
  title =	{{Formalization of Randomized Approximation Algorithms for Frequency Moments}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{21:1--21:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.21},
  URN =		{urn:nbn:de:0030-drops-167308},
  doi =		{10.4230/LIPIcs.ITP.2022.21},
  annote =	{Keywords: Formal Verification, Isabelle/HOL, Randomized Algorithms, Frequency Moments}
}
  • Refine by Author
  • 2 Karayel, Emin

  • Refine by Classification
  • 2 Mathematics of computing → Probabilistic algorithms
  • 2 Theory of computation → Pseudorandomness and derandomization
  • 1 Theory of computation → Distributed algorithms
  • 1 Theory of computation → Higher order logic
  • 1 Theory of computation → Logic and verification
  • Show More...

  • Refine by Keyword
  • 2 Randomized Algorithms
  • 1 Derandomization
  • 1 Distinct Elements
  • 1 Distributed Algorithms
  • 1 Expander Graphs
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail