2 Search Results for "Khosravian Ghadikolaei, Mehdi"


Document
(In)approximability of Maximum Minimal FVS

Authors: Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, and Nikolaos Melissinos

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
We study the approximability of the NP-complete Maximum Minimal Feedback Vertex Set problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: Maximum Minimal Vertex Cover, for which the best achievable approximation ratio is √n, and Upper Dominating Set, which does not admit any n^{1-ε} approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for Max Min FVS with a ratio of O(n^{2/3}), as well as a matching hardness of approximation bound of n^{2/3-ε}, improving the previous known hardness of n^{1/2-ε}. Along the way, we also obtain an O(Δ)-approximation and show that this is asymptotically best possible, and we improve the bound for which the problem is NP-hard from Δ ≥ 9 to Δ ≥ 6. Having settled the problem’s approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio r, produces an r-approximate solution in time n^O(n/r^{3/2}). This time-approximation trade-off is essentially tight: we show that under the ETH, for any ratio r and ε > 0, no algorithm can r-approximate this problem in time n^{O((n/r^{3/2})^{1-ε})}, hence we precisely characterize the approximability of the problem for the whole spectrum between polynomial and sub-exponential time, up to an arbitrarily small constant in the second exponent.

Cite as

Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, and Nikolaos Melissinos. (In)approximability of Maximum Minimal FVS. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dublois_et_al:LIPIcs.ISAAC.2020.3,
  author =	{Dublois, Louis and Hanaka, Tesshu and Khosravian Ghadikolaei, Mehdi and Lampis, Michael and Melissinos, Nikolaos},
  title =	{{(In)approximability of Maximum Minimal FVS}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.3},
  URN =		{urn:nbn:de:0030-drops-133477},
  doi =		{10.4230/LIPIcs.ISAAC.2020.3},
  annote =	{Keywords: Approximation Algorithms, ETH, Inapproximability}
}
Document
How Bad is the Freedom to Flood-It?

Authors: Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi, Michael Lampis, and Yota Otachi

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Fixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to produce a monochromatic ("flooded") graph as quickly as possible. Their difference is that in Free-Flood-It the player has the additional freedom of choosing the vertex to play in each move. In this paper, we investigate how this freedom affects the complexity of the problem. It turns out that the freedom is bad in some sense. We show that some cases trivially solvable for Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more involved arguments. We finally present some combinatorial properties connecting or separating the two problems. In particular, we show that the length of an optimal solution for Fixed-Flood-It is always at most twice that of Free-Flood-It, and this is tight.

Cite as

Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi, Michael Lampis, and Yota Otachi. How Bad is the Freedom to Flood-It?. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{belmonte_et_al:LIPIcs.FUN.2018.5,
  author =	{Belmonte, R\'{e}my and Khosravian Ghadikolaei, Mehdi and Kiyomi, Masashi and Lampis, Michael and Otachi, Yota},
  title =	{{How Bad is the Freedom to Flood-It?}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.5},
  URN =		{urn:nbn:de:0030-drops-87961},
  doi =		{10.4230/LIPIcs.FUN.2018.5},
  annote =	{Keywords: flood-filling game, parameterized complexity}
}
  • Refine by Author
  • 2 Khosravian Ghadikolaei, Mehdi
  • 2 Lampis, Michael
  • 1 Belmonte, Rémy
  • 1 Dublois, Louis
  • 1 Hanaka, Tesshu
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Parameterized complexity and exact algorithms

  • Refine by Keyword
  • 1 Approximation Algorithms
  • 1 ETH
  • 1 Inapproximability
  • 1 flood-filling game
  • 1 parameterized complexity

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail