7 Search Results for "Kiefer, Peter"


Document
Do You Need Instructions Again? Predicting Wayfinding Instruction Demand

Authors: Negar Alinaghi, Tiffany C. K. Kwok, Peter Kiefer, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
The demand for instructions during wayfinding, defined as the frequency of requesting instructions for each decision point, can be considered as an important indicator of the internal cognitive processes during wayfinding. This demand can be a consequence of the mental state of feeling lost, being uncertain, mind wandering, having difficulty following the route, etc. Therefore, it can be of great importance for theoretical cognitive studies on human perception of the environment. From an application perspective, this demand can be used as a measure of the effectiveness of the navigation assistance system. It is therefore worthwhile to be able to predict this demand and also to know what factors trigger it. This paper takes a step in this direction by reporting a successful prediction of instruction demand (accuracy of 78.4%) in a real-world wayfinding experiment with 45 participants, and interpreting the environmental, user, instructional, and gaze-related features that caused it.

Cite as

Negar Alinaghi, Tiffany C. K. Kwok, Peter Kiefer, and Ioannis Giannopoulos. Do You Need Instructions Again? Predicting Wayfinding Instruction Demand. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alinaghi_et_al:LIPIcs.GIScience.2023.1,
  author =	{Alinaghi, Negar and Kwok, Tiffany C. K. and Kiefer, Peter and Giannopoulos, Ioannis},
  title =	{{Do You Need Instructions Again? Predicting Wayfinding Instruction Demand}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.1},
  URN =		{urn:nbn:de:0030-drops-188963},
  doi =		{10.4230/LIPIcs.GIScience.2023.1},
  annote =	{Keywords: Wayfinding, Navigation Instructions, Urban Computing, Gaze Analysis}
}
Document
Short Paper
3D Sketch Maps: Concept, Potential Benefits, and Challenges (Short Paper)

Authors: Kevin Gonyop Kim, Jakub Krukar, Panagiotis Mavros, Jiayan Zhao, Peter Kiefer, Angela Schwering, Christoph Hölscher, and Martin Raubal

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
Studying the 3D aspect of spatial information has become increasingly important due to changes in the way we interact with the surrounding environments as well as technological innovations. Current pen-and-paper approaches of sketch mapping have a limitation in investigating 3D spatial knowledge as they are forced to be drawn on 2D interfaces. In this paper, we propose the concept of 3D sketch mapping as a tool to study human spatial knowledge by externalizing the mental models of spatial information with 3D representations. The goal of this paper is to introduce the concept, discuss its potential importance and challenges, and share our vision for future research directions.

Cite as

Kevin Gonyop Kim, Jakub Krukar, Panagiotis Mavros, Jiayan Zhao, Peter Kiefer, Angela Schwering, Christoph Hölscher, and Martin Raubal. 3D Sketch Maps: Concept, Potential Benefits, and Challenges (Short Paper). In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 14:1-14:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.COSIT.2022.14,
  author =	{Kim, Kevin Gonyop and Krukar, Jakub and Mavros, Panagiotis and Zhao, Jiayan and Kiefer, Peter and Schwering, Angela and H\"{o}lscher, Christoph and Raubal, Martin},
  title =	{{3D Sketch Maps: Concept, Potential Benefits, and Challenges}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{14:1--14:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.14},
  URN =		{urn:nbn:de:0030-drops-168992},
  doi =		{10.4230/LIPIcs.COSIT.2022.14},
  annote =	{Keywords: Sketch maps, mental representations, spatial knowledge}
}
Document
Not Arbitrary, Systematic! Average-Based Route Selection for Navigation Experiments

Authors: Bartosz Mazurkiewicz, Markus Kattenbeck, Peter Kiefer, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 177, 11th International Conference on Geographic Information Science (GIScience 2021) - Part I (2020)


Abstract
While studies on human wayfinding have seen increasing interest, the criteria for the choice of the routes used in these studies have usually not received particular attention. This paper presents a methodological framework which aims at filling this gap. Based on a thorough literature review on route choice criteria, we present an approach that supports wayfinding researchers in finding a route whose characteristics are as similar as possible to the population of all considered routes with a predefined length in a particular area. We provide evidence for the viability of our approach by means of both, synthetic and real-world data. The proposed method allows wayfinding researchers to justify their route choice decisions, and it enhances replicability of studies on human wayfinding. Furthermore, it allows to find similar routes in different geographical areas.

Cite as

Bartosz Mazurkiewicz, Markus Kattenbeck, Peter Kiefer, and Ioannis Giannopoulos. Not Arbitrary, Systematic! Average-Based Route Selection for Navigation Experiments. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part I. Leibniz International Proceedings in Informatics (LIPIcs), Volume 177, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{mazurkiewicz_et_al:LIPIcs.GIScience.2021.I.8,
  author =	{Mazurkiewicz, Bartosz and Kattenbeck, Markus and Kiefer, Peter and Giannopoulos, Ioannis},
  title =	{{Not Arbitrary, Systematic! Average-Based Route Selection for Navigation Experiments}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part I},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-166-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{177},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.I.8},
  URN =		{urn:nbn:de:0030-drops-130437},
  doi =		{10.4230/LIPIcs.GIScience.2021.I.8},
  annote =	{Keywords: Route Selection, Route Features, Human Wayfinding, Navigation, Experiments, Replicability}
}
Document
The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs

Authors: Sandra Kiefer and Daniel Neuen

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
The Weisfeiler-Leman procedure is a widely-used approach for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into bi- and triconnected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its triconnected components. Thus, the dimension of the algorithm needed to distinguish two given graphs is at most the dimension required to distinguish the corresponding decompositions into 3-connected components (assuming dimension at least 2). This result implies that for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of graphs of treewidth at most k. Using a construction by Cai, Fürer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.

Cite as

Sandra Kiefer and Daniel Neuen. The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 45:1-45:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.MFCS.2019.45,
  author =	{Kiefer, Sandra and Neuen, Daniel},
  title =	{{The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{45:1--45:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.45},
  URN =		{urn:nbn:de:0030-drops-109893},
  doi =		{10.4230/LIPIcs.MFCS.2019.45},
  annote =	{Keywords: Weisfeiler-Leman, separators, first-order logic, counting quantifiers}
}
Document
Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques

Authors: Stefan Kiefer and Cas Widdershoven

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We introduce a novel technique to analyse unambiguous Büchi automata quantitatively, and apply this to the model checking problem. It is based on linear-algebra arguments that originate from the analysis of matrix semigroups with constant spectral radius. This method can replace a combinatorial procedure that dominates the computational complexity of the existing procedure by Baier et al. We analyse the complexity in detail, showing that, in terms of the set Q of states of the automaton, the new algorithm runs in time O(|Q|^4), improving on an efficient implementation of the combinatorial algorithm by a factor of |Q|.

Cite as

Stefan Kiefer and Cas Widdershoven. Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 82:1-82:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.MFCS.2019.82,
  author =	{Kiefer, Stefan and Widdershoven, Cas},
  title =	{{Efficient Analysis of Unambiguous Automata Using Matrix Semigroup Techniques}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{82:1--82:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.82},
  URN =		{urn:nbn:de:0030-drops-110269},
  doi =		{10.4230/LIPIcs.MFCS.2019.82},
  annote =	{Keywords: Algorithms, Automata, Markov Chains, Matrix Semigroups}
}
Document
Short Paper
Gaze Sequences and Map Task Complexity (Short Paper)

Authors: Fabian Göbel, Peter Kiefer, Ioannis Giannopoulos, and Martin Raubal

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
As maps are visual representations of spatial context to communicate geographic information, analysis of gaze behavior is promising to improve map design. In this research we investigate the impact of map task complexity and different legend types on the visual attention of a user. With an eye tracking experiment we could show that the complexity of two map tasks can be measured and compared based on AOI sequences analysis. This knowledge can help to improve map design for static maps or in the context of interactive systems, create better map interfaces, that adapt to the user's current task.

Cite as

Fabian Göbel, Peter Kiefer, Ioannis Giannopoulos, and Martin Raubal. Gaze Sequences and Map Task Complexity (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 30:1-30:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gobel_et_al:LIPIcs.GISCIENCE.2018.30,
  author =	{G\"{o}bel, Fabian and Kiefer, Peter and Giannopoulos, Ioannis and Raubal, Martin},
  title =	{{Gaze Sequences and Map Task Complexity}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{30:1--30:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.30},
  URN =		{urn:nbn:de:0030-drops-93587},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.30},
  annote =	{Keywords: eye tracking, sequence analysis, map task complexity}
}
Document
Uncertainty in Wayfinding: A Conceptual Framework and Agent-Based Model

Authors: David Jonietz and Peter Kiefer

Published in: LIPIcs, Volume 86, 13th International Conference on Spatial Information Theory (COSIT 2017)


Abstract
Though the wayfinding process is inherently uncertain, most models of wayfinding do not offer sufficient possibilities for modeling uncertainty. Such modeling approaches, however, are required to engineer assistance systems that recognize, predict, and react to a wayfinder's uncertainty. This paper introduces a conceptual framework for modeling uncertainty in wayfinding. It is supposed that uncertainty when following route instructions in wayfinding is caused by non-deterministic spatial reference system transformations. The uncertainty experienced by a wayfinder varies over time and depends on how well wayfinding instructions fit with the environment. The conceptual framework includes individual differences regarding wayfinding skills and regarding uncertainty tolerance. It is implemented as an agent-based model, based on the belief-desire-intention (BDI) framework. The feasibility of the approach is demonstrated with agent-based simulations.

Cite as

David Jonietz and Peter Kiefer. Uncertainty in Wayfinding: A Conceptual Framework and Agent-Based Model. In 13th International Conference on Spatial Information Theory (COSIT 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 86, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{jonietz_et_al:LIPIcs.COSIT.2017.15,
  author =	{Jonietz, David and Kiefer, Peter},
  title =	{{Uncertainty in Wayfinding: A Conceptual Framework and Agent-Based Model}},
  booktitle =	{13th International Conference on Spatial Information Theory (COSIT 2017)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-043-9},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{86},
  editor =	{Clementini, Eliseo and Donnelly, Maureen and Yuan, May and Kray, Christian and Fogliaroni, Paolo and Ballatore, Andrea},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2017.15},
  URN =		{urn:nbn:de:0030-drops-77497},
  doi =		{10.4230/LIPIcs.COSIT.2017.15},
  annote =	{Keywords: Wayfinding, Uncertainty, Agent-Based Model}
}
  • Refine by Author
  • 5 Kiefer, Peter
  • 3 Giannopoulos, Ioannis
  • 2 Raubal, Martin
  • 1 Alinaghi, Negar
  • 1 Göbel, Fabian
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Activity recognition and understanding
  • 1 Computing methodologies → Supervised learning by classification
  • 1 General and reference → Empirical studies
  • 1 Human-centered computing → Empirical studies in HCI
  • 1 Human-centered computing → Visualization theory, concepts and paradigms
  • Show More...

  • Refine by Keyword
  • 2 Wayfinding
  • 1 Agent-Based Model
  • 1 Algorithms
  • 1 Automata
  • 1 Experiments
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2019
  • 1 2017
  • 1 2018
  • 1 2020
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail