3 Search Results for "Ko, Sang-Ki"


Document
Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws

Authors: Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). In the H-Coloring problem the graph H is fixed and we ask whether an instance graph G admits an H-coloring. A generalization of this problem is H-ColoringExt, where some vertices of G are already mapped to vertices of H and we ask if this partial mapping can be extended to an H-coloring. We study the complexity of variants of H-Coloring in F-free graphs, i.e., graphs excluding a fixed graph F as an induced subgraph. For integers a,b,c ⩾ 1, by S_{a,b,c} we denote the graph obtained by identifying one endvertex of three paths on a+1, b+1, and c+1 vertices, respectively. For odd k ⩾ 5, by W_k we denote the graph obtained from the k-cycle by adding a universal vertex. As our main algorithmic result we show that W_5-ColoringExt is polynomial-time solvable in S_{2,1,1}-free graphs. This result exhibits an interesting non-monotonicity of H-ColoringExt with respect to taking induced subgraphs of H. Indeed, W_5 contains a triangle, and K_3-Coloring, i.e., classical 3-coloring, is NP-hard already in claw-free (i.e., S_{1,1,1}-free) graphs. Our algorithm is based on two main observations: 1) W_5-ColoringExt in S_{2,1,1}-free graphs can be in polynomial time reduced to a variant of the problem of finding an independent set intersecting all triangles, and 2) the latter problem can be solved in polynomial time in S_{2,1,1}-free graphs. We complement this algorithmic result with several negative ones. In particular, we show that W_5-Coloring is NP-hard in P_t-free graphs for some constant t and W_5-ColoringExt is NP-hard in S_{3,3,3}-free graphs of bounded degree. This is again uncommon, as usually problems that are NP-hard in S_{a,b,c}-free graphs for some constant a,b,c are already hard in claw-free graphs

Cite as

Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{debski_et_al:LIPIcs.ISAAC.2022.14,
  author =	{D\k{e}bski, Micha{\l} and Lonc, Zbigniew and Okrasa, Karolina and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.14},
  URN =		{urn:nbn:de:0030-drops-172996},
  doi =		{10.4230/LIPIcs.ISAAC.2022.14},
  annote =	{Keywords: graph homomorphism, forbidden induced subgraphs, precoloring extension}
}
Document
Simon’s Congruence Pattern Matching

Authors: Sungmin Kim, Sang-Ki Ko, and Yo-Sub Han

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Testing Simon’s congruence asks whether two strings have the same set of subsequences of length no greater than a given integer. In the light of the recent discovery of an optimal linear algorithm for testing Simon’s congruence, we solve the Simon’s congruence pattern matching problem. The problem requires finding all substrings of a text that are congruent to a pattern under the Simon’s congruence. Our algorithm efficiently solves the problem in linear time in the length of the text by reusing results from previous computations with the help of new data structures called X-trees and Y-trees. Moreover, we define and solve variants of the Simon’s congruence pattern matching problem. They require finding the longest and shortest substring of the text as well as the shortest subsequence of the text which is congruent to the pattern under the Simon’s congruence. Two more variants which ask for the longest congruent subsequence of the text and optimizing the pattern matching problem are left as open problems.

Cite as

Sungmin Kim, Sang-Ki Ko, and Yo-Sub Han. Simon’s Congruence Pattern Matching. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 60:1-60:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.ISAAC.2022.60,
  author =	{Kim, Sungmin and Ko, Sang-Ki and Han, Yo-Sub},
  title =	{{Simon’s Congruence Pattern Matching}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{60:1--60:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.60},
  URN =		{urn:nbn:de:0030-drops-173456},
  doi =		{10.4230/LIPIcs.ISAAC.2022.60},
  annote =	{Keywords: pattern matching, Simon’s congruence, string algorithm, data structure}
}
Document
On the Identity Problem for the Special Linear Group and the Heisenberg Group

Authors: Sang-Ki Ko, Reino Niskanen, and Igor Potapov

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We study the identity problem for matrices, i.e., whether the identity matrix is in a semigroup generated by a given set of generators. In particular we consider the identity problem for the special linear group following recent NP-completeness result for SL(2,Z) and the undecidability for SL(4,Z) generated by 48 matrices. First we show that there is no embedding from pairs of words into 3 x3 integer matrices with determinant one, i.e., into SL{(3,Z)} extending previously known result that there is no embedding into C^{2 x 2}. Apart from theoretical importance of the result it can be seen as a strong evidence that the computational problems in SL{(3,Z)} are decidable. The result excludes the most natural possibility of encoding the Post correspondence problem into SL{(3,Z)}, where the matrix products extended by the right multiplication correspond to the Turing machine simulation. Then we show that the identity problem is decidable in polynomial time for an important subgroup of SL(3,Z), the Heisenberg group H(3,Z). Furthermore, we extend the decidability result for H(n,Q) in any dimension n. Finally we are tightening the gap on decidability question for this long standing open problem by improving the undecidability result for the identity problem in SL{(4,Z)} substantially reducing the bound on the size of the generator set from 48 to 8 by developing a novel reduction technique.

Cite as

Sang-Ki Ko, Reino Niskanen, and Igor Potapov. On the Identity Problem for the Special Linear Group and the Heisenberg Group. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 132:1-132:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ko_et_al:LIPIcs.ICALP.2018.132,
  author =	{Ko, Sang-Ki and Niskanen, Reino and Potapov, Igor},
  title =	{{On the Identity Problem for the Special Linear Group and the Heisenberg Group}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{132:1--132:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.132},
  URN =		{urn:nbn:de:0030-drops-91367},
  doi =		{10.4230/LIPIcs.ICALP.2018.132},
  annote =	{Keywords: matrix semigroup, identity problem, special linear group, Heisenberg group, decidability}
}
  • Refine by Author
  • 2 Ko, Sang-Ki
  • 1 Dębski, Michał
  • 1 Han, Yo-Sub
  • 1 Kim, Sungmin
  • 1 Lonc, Zbigniew
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Symbolic and algebraic algorithms
  • 1 Mathematics of computing → Graph coloring
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Models of computation
  • 1 Theory of computation → Pattern matching
  • Show More...

  • Refine by Keyword
  • 1 Heisenberg group
  • 1 Simon’s congruence
  • 1 data structure
  • 1 decidability
  • 1 forbidden induced subgraphs
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2022
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail