3 Search Results for "Lang, Stefan"


Document
Space-Bounded Unitary Quantum Computation with Postselection

Authors: Seiichiro Tani

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Space-bounded computation has been a central topic in classical and quantum complexity theory. In the quantum case, every elementary gate must be unitary. This restriction makes it unclear whether the power of space-bounded computation changes by allowing intermediate measurement. In the bounded error case, Fefferman and Remscrim [STOC 2021, pp.1343-1356] and Girish, Raz and Zhan [ICALP 2021, pp.73:1-73:20] recently provided the break-through results that the power does not change. This paper shows that a similar result holds for space-bounded quantum computation with postselection. Namely, it is proved possible to eliminate intermediate postselections and measurements in the space-bounded quantum computation in the bounded-error setting. Our result strengthens the recent result by Le Gall, Nishimura and Yakaryilmaz [TQC 2021, pp.10:1-10:17] that logarithmic-space bounded-error quantum computation with intermediate postselections and measurements is equivalent in computational power to logarithmic-space unbounded-error probabilistic computation. As an application, it is shown that bounded-error space-bounded one-clean qubit computation (DQC1) with postselection is equivalent in computational power to unbounded-error space-bounded probabilistic computation, and the computational supremacy of the bounded-error space-bounded DQC1 is interpreted in complexity-theoretic terms.

Cite as

Seiichiro Tani. Space-Bounded Unitary Quantum Computation with Postselection. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 81:1-81:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{tani:LIPIcs.MFCS.2022.81,
  author =	{Tani, Seiichiro},
  title =	{{Space-Bounded Unitary Quantum Computation with Postselection}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{81:1--81:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.81},
  URN =		{urn:nbn:de:0030-drops-168798},
  doi =		{10.4230/LIPIcs.MFCS.2022.81},
  annote =	{Keywords: quantum complexity theory, space-bounded computation, postselection}
}
Document
Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

Authors: Justus Bogner, Adrian Weller, Stefan Wagner, and Alfred Zimmermann

Published in: OASIcs, Volume 78, Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)


Abstract
To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ∼11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices.

Cite as

Justus Bogner, Adrian Weller, Stefan Wagner, and Alfred Zimmermann. Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences. In Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019). Open Access Series in Informatics (OASIcs), Volume 78, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bogner_et_al:OASIcs.Microservices.2017-2019.3,
  author =	{Bogner, Justus and Weller, Adrian and Wagner, Stefan and Zimmermann, Alfred},
  title =	{{Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences}},
  booktitle =	{Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019)},
  pages =	{3:1--3:22},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-137-5},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{78},
  editor =	{Cruz-Filipe, Lu{\'\i}s and Giallorenzo, Saverio and Montesi, Fabrizio and Peressotti, Marco and Rademacher, Florian and Sachweh, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.Microservices.2017-2019.3},
  URN =		{urn:nbn:de:0030-drops-118255},
  doi =		{10.4230/OASIcs.Microservices.2017-2019.3},
  annote =	{Keywords: Maintainability, Software Evolution, Quality Assurance, Service-Based Systems, SOA, Microservices, Systematic Literature Review}
}
Document
Short Paper
Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper)

Authors: Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
Abstract data types are a helpful framework to formalise analyses and make them more transparent, reproducible and comprehensible. We are revisiting an approach based on the space, time and theme dimensions of remotely sensed data, and extending it with a more differentiated understanding of space-time representations. In contrast to existing approaches and implementations that consider only fixed spatial units (e.g. pixels), our approach allows investigations of the spatial units' spatio-temporal characteristics, such as the size and shape of their geometry, and their relationships. Five different abstract data types are identified to describe geographical phenomenon, either directly or in combination: coverage, time series, trajectory, composition and evolution.

Cite as

Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi. Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 60:1-60:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sudmanns_et_al:LIPIcs.GISCIENCE.2018.60,
  author =	{Sudmanns, Martin and Lang, Stefan and Tiede, Dirk and Werner, Christian and Augustin, Hannah and Baraldi, Andrea},
  title =	{{Abstract Data Types for Spatio-Temporal Remote Sensing Analysis}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{60:1--60:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.60},
  URN =		{urn:nbn:de:0030-drops-93881},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.60},
  annote =	{Keywords: Big Earth Data, Semantic Analysis, Data Cube}
}
  • Refine by Author
  • 1 Augustin, Hannah
  • 1 Baraldi, Andrea
  • 1 Bogner, Justus
  • 1 Lang, Stefan
  • 1 Sudmanns, Martin
  • Show More...

  • Refine by Classification
  • 1 Information systems → Search interfaces
  • 1 Information systems → Web services
  • 1 Social and professional topics → Quality assurance
  • 1 Software and its engineering → Maintaining software
  • 1 Software and its engineering → Software evolution
  • Show More...

  • Refine by Keyword
  • 1 Big Earth Data
  • 1 Data Cube
  • 1 Maintainability
  • 1 Microservices
  • 1 Quality Assurance
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail