2 Search Results for "Li, Zekun"


Document
Twins: BFT Systems Made Robust

Authors: Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, and Dahlia Malkhi

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
This paper presents Twins, an automated unit test generator of Byzantine attacks. Twins implements three types of Byzantine behaviors: (i) leader equivocation, (ii) double voting, and (iii) losing internal state such as forgetting "locks" guarding voted values. To emulate interesting attacks by a Byzantine node, it instantiates twin copies of the node instead of one, giving both twins the same identities and network credentials. To the rest of the system, the twins appear indistinguishable from a single node behaving in a "questionable" manner. Twins can systematically generate Byzantine attack scenarios at scale, execute them in a controlled manner, and examine their behavior. Twins scenarios iterate over protocol rounds and vary the communication patterns among nodes. Twins runs in a production setting within DiemBFT where it can execute 44M Twins-generated scenarios daily. Whereas the system at hand did not manifest errors, subtle safety bugs that were deliberately injected for the purpose of validating the implementation of Twins itself were exposed within minutes. Twins can prevent developers from regressing correctness when updating the codebase, introducing new features, or performing routine maintenance tasks. Twins only requires a thin wrapper over DiemBFT, we thus envision other systems using it. Building on this idea, one new attack and several known attacks against other BFT protocols were materialized as Twins scenarios. In all cases, the target protocols break within fewer than a dozen protocol rounds, hence it is realistic for the Twins approach to expose the problems.

Cite as

Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, and Dahlia Malkhi. Twins: BFT Systems Made Robust. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 7:1-7:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bano_et_al:LIPIcs.OPODIS.2021.7,
  author =	{Bano, Shehar and Sonnino, Alberto and Chursin, Andrey and Perelman, Dmitri and Li, Zekun and Ching, Avery and Malkhi, Dahlia},
  title =	{{Twins: BFT Systems Made Robust}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{7:1--7:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.7},
  URN =		{urn:nbn:de:0030-drops-157825},
  doi =		{10.4230/LIPIcs.OPODIS.2021.7},
  annote =	{Keywords: Distributed Systems, Byzantine Fault Tolerance, Real-World Deployment}
}
Document
Brief Announcement
Brief Announcement: Twins – BFT Systems Made Robust

Authors: Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, and Dahlia Malkhi

Published in: LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)


Abstract
Twins is an effective strategy for generating test scenarios with Byzantine [Lamport et al., 1982] nodes in order to find flaws in Byzantine Fault Tolerant (BFT) systems. Twins finds flaws in the design or implementation of BFT protocols that may cause correctness issues. The main idea of Twins is the following: running twin instances of a node that use correct, unmodified code and share the same network identity and credentials allows to emulate most interesting Byzantine behaviors. Because a twin executes normal, unmodified node code, building Twins only requires a thin wrapper over an existing distributed system designed for Byzantine tolerance. To emulate material, interesting scenarios with Byzantine nodes, it instantiates one or more twin copies of the node, giving the twins the same identities and network credentials as the original node. To the rest of the system, the node and all its twins appear indistinguishable from a single node behaving in a "questionable" manner. This approach generates many interesting Byzantine behaviors, including equivocation, double voting, and losing internal state, while forgoing uninteresting behavior scenarios that can be filtered at the transport layer, such as producing semantically invalid messages. Building on configurations with twin nodes, Twins systematically generates scenarios with Byzantine nodes via enumeration over protocol rounds and communication patterns among nodes. Despite this being inherently exponential, one new flaw and several known flaws were materialized by Twins in the arena of BFT consensus protocols. In all cases, protocols break within fewer than a dozen protocol rounds, hence it is realistic for the Twins approach to expose the problems. In two of these cases, it took the community more than a decade to discover protocol flaws that Twins would have surfaced within minutes. Additionally, Twins has been incorporated into the continuous release testing process of a production setting (DiemBFT) in which it can execute 44M Twins-generated scenarios daily.

Cite as

Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, and Dahlia Malkhi. Brief Announcement: Twins – BFT Systems Made Robust. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 46:1-46:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bano_et_al:LIPIcs.DISC.2021.46,
  author =	{Bano, Shehar and Sonnino, Alberto and Chursin, Andrey and Perelman, Dmitri and Li, Zekun and Ching, Avery and Malkhi, Dahlia},
  title =	{{Brief Announcement: Twins – BFT Systems Made Robust}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{46:1--46:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.46},
  URN =		{urn:nbn:de:0030-drops-148485},
  doi =		{10.4230/LIPIcs.DISC.2021.46},
  annote =	{Keywords: Distributed Systems, Byzantine Fault Tolerance, Real-World Deployment}
}
  • Refine by Author
  • 2 Bano, Shehar
  • 2 Ching, Avery
  • 2 Chursin, Andrey
  • 2 Li, Zekun
  • 2 Malkhi, Dahlia
  • Show More...

  • Refine by Classification
  • 2 Security and privacy → Distributed systems security

  • Refine by Keyword
  • 2 Byzantine Fault Tolerance
  • 2 Distributed Systems
  • 2 Real-World Deployment

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail