64 Search Results for "M�nzer, Stefan"


Document
The AC⁰-Complexity of Visibly Pushdown Languages

Authors: Stefan Göller and Nathan Grosshans

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study the question of which visibly pushdown languages (VPLs) are in the complexity class AC⁰ and how to effectively decide this question. Our contribution is to introduce a particular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the best of our knowledge our research community is unaware of containment or non-containment in AC⁰ for any language in our newly introduced class. Our main result states that there is an algorithm that, given a visibly pushdown automaton, correctly outputs exactly one of the following: that its language L is in AC⁰, some m ≥ 2 such that MODₘ (the words over {0,1} having a number of 1’s divisible by m) is constant-depth reducible to L (implying that L is not in AC⁰), or a finite disjoint union of intermediate VPLs that L is constant-depth equivalent to. In the latter of the three cases one can moreover effectively compute k,l ∈ ℕ_{> 0} with k≠l such that the concrete intermediate VPL L(S → ε ∣ ac^{k-1}Sb₁ ∣ ac^{l-1}Sb₂) is constant-depth reducible to the language L. Due to their particular nature we conjecture that either all intermediate VPLs are in AC⁰ or all are not. As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can effectively determine if it is in AC⁰ - hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter language is in AC⁰ (when restricted to well-matched words). For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are closely related to forest algebras (introduced by Bojańczyk and Walukiewicz), and use Green’s relations.

Cite as

Stefan Göller and Nathan Grosshans. The AC⁰-Complexity of Visibly Pushdown Languages. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goller_et_al:LIPIcs.STACS.2024.38,
  author =	{G\"{o}ller, Stefan and Grosshans, Nathan},
  title =	{{The AC⁰-Complexity of Visibly Pushdown Languages}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.38},
  URN =		{urn:nbn:de:0030-drops-197483},
  doi =		{10.4230/LIPIcs.STACS.2024.38},
  annote =	{Keywords: Visibly pushdown languages, Circuit Complexity, AC0}
}
Document
From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem

Authors: Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
Several works have recently investigated the parameterized complexity of data completion problems, motivated by their applications in machine learning, and clustering in particular. Interestingly, these problems can be equivalently formulated as classical graph problems on induced subgraphs of powers of partially-defined hypercubes. In this paper, we follow up on this recent direction by investigating the Independent Set problem on this graph class, which has been studied in the data science setting under the name Diversity. We obtain a comprehensive picture of the problem’s parameterized complexity and establish its fixed-parameter tractability w.r.t. the solution size plus the power of the hypercube. Given that several such FO-definable problems have been shown to be fixed-parameter tractable on the considered graph class, one may ask whether fixed-parameter tractability could be extended to capture all FO-definable problems. We answer this question in the negative by showing that FO model checking on induced subgraphs of hypercubes is as difficult as FO model checking on general graphs.

Cite as

Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.IPEC.2023.16,
  author =	{Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ordyniak, Sebastian and Szeider, Stefan},
  title =	{{From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.16},
  URN =		{urn:nbn:de:0030-drops-194357},
  doi =		{10.4230/LIPIcs.IPEC.2023.16},
  annote =	{Keywords: Independent Set, Powers of Hypercubes, Diversity, Parameterized Complexity, Incomplete Data}
}
Document
Approximate Turing Kernelization and Lower Bounds for Domination Problems

Authors: Stefan Kratsch and Pascal Kunz

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
An α-approximate polynomial Turing kernelization is a polynomial-time algorithm that computes an (α c)-approximate solution for a parameterized optimization problem when given access to an oracle that can compute c-approximate solutions to instances with size bounded by a polynomial in the parameter. Hols et al. [ESA 2020] showed that a wide array of graph problems admit a (1+ε)-approximate polynomial Turing kernelization when parameterized by the treewidth of the graph and left open whether Dominating Set also admits such a kernelization. We show that Dominating Set and several related problems parameterized by treewidth do not admit constant-factor approximate polynomial Turing kernelizations, even with respect to the much larger parameter vertex cover number, under certain reasonable complexity assumptions. On the positive side, we show that all of them do have a (1+ε)-approximate polynomial Turing kernelization for every ε > 0 for the joint parameterization by treewidth and maximum degree, a parameter which generalizes cutwidth, for example.

Cite as

Stefan Kratsch and Pascal Kunz. Approximate Turing Kernelization and Lower Bounds for Domination Problems. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 32:1-32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kratsch_et_al:LIPIcs.IPEC.2023.32,
  author =	{Kratsch, Stefan and Kunz, Pascal},
  title =	{{Approximate Turing Kernelization and Lower Bounds for Domination Problems}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{32:1--32:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.32},
  URN =		{urn:nbn:de:0030-drops-194516},
  doi =		{10.4230/LIPIcs.IPEC.2023.32},
  annote =	{Keywords: Approximate Turing kernelization, approximation lower bounds, exponential-time hypothesis, dominating set, capacitated dominating, connected dominating set, independent dominating set, treewidth, vertex cover number}
}
Document
PACE Solver Description
PACE Solver Description: The PACE 2023 Parameterized Algorithms and Computational Experiments Challenge: Twinwidth

Authors: Max Bannach and Sebastian Berndt

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
This article is a report by the challenge organizers on the 8th Parameterized Algorithms and Computational Experiments Challenge (PACE 2023). As was common in previous iterations of the competition, this year’s iteration implemented an exact and heuristic track for a parameterized problem that has gained attention in the theory community. This year, the problem was to compute the twinwidth of a graph, a recently introduced width parameter that measures the similarity of a graph to a cograph. In the exact track, the competition participants were asked to develop an exact algorithm that can solve as many instances as possible from a benchmark set of 100 instances - with a time limit of 30 minutes per instance. The same task must be accomplished within 5 minutes in the heuristic track. However, the result in this track is not required to be optimal. As in previous iterations, the organizers handed out awards to the best solutions in both tracks and to the best student submissions. New this year is a dedicated theory award that appreciates new theoretical insights found by the participants during the development of their tools.

Cite as

Max Bannach and Sebastian Berndt. PACE Solver Description: The PACE 2023 Parameterized Algorithms and Computational Experiments Challenge: Twinwidth. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 35:1-35:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bannach_et_al:LIPIcs.IPEC.2023.35,
  author =	{Bannach, Max and Berndt, Sebastian},
  title =	{{PACE Solver Description: The PACE 2023 Parameterized Algorithms and Computational Experiments Challenge: Twinwidth}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{35:1--35:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.35},
  URN =		{urn:nbn:de:0030-drops-194548},
  doi =		{10.4230/LIPIcs.IPEC.2023.35},
  annote =	{Keywords: Twinwidth, Algorithm Engineering, FPT, Kernelization}
}
Document
Developmental Machine Learning: From Human Learning to Machines and Back (Dagstuhl Seminar 22422)

Authors: James M. Rehg, Pierre-Yves Oudeyer, Linda B. Smith, Sho Tsuji, Stefan Stojanov, and Ngoc Anh Thai

Published in: Dagstuhl Reports, Volume 12, Issue 10 (2023)


Abstract
This interdisciplinary seminar brought together 18 academic and industry computer science researchers in artificial intelligence, computer vision and machine learning with 19 researchers from developmental psychology, neuroscience and linguistics. The objective was to catalyze connections between these communities, through discussions on both how the use of developmental insights can spur advances in machine learning, and how computational models and data-driven learning can lead to novel tools and insights for studying child development. The seminar consisted of tutorials, working groups, and a series of talks and discussion sessions. The main outcomes of this seminar were 1) The founding of DevelopmentalAI (http://www.developmentalai.com), an online research community to serve as a venue for communication and collaboration between develpomental and machine learning researchers, as well as a place collect and organize relevant research papers and talks; 2) Working group outputs - summaries of in-depth discussions on research questions at the intersection of developmental and machine learning, including the role of information bottlenecks and multimodality, as well as proposals for novel developmentally motivated benchmarks.

Cite as

James M. Rehg, Pierre-Yves Oudeyer, Linda B. Smith, Sho Tsuji, Stefan Stojanov, and Ngoc Anh Thai. Developmental Machine Learning: From Human Learning to Machines and Back (Dagstuhl Seminar 22422). In Dagstuhl Reports, Volume 12, Issue 10, pp. 143-165, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{rehg_et_al:DagRep.12.10.143,
  author =	{Rehg, James M. and Oudeyer, Pierre-Yves and Smith, Linda B. and Tsuji, Sho and Stojanov, Stefan and Thai, Ngoc Anh},
  title =	{{Developmental Machine Learning: From Human Learning to Machines and Back (Dagstuhl Seminar 22422)}},
  pages =	{143--165},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{10},
  editor =	{Rehg, James M. and Oudeyer, Pierre-Yves and Smith, Linda B. and Tsuji, Sho and Stojanov, Stefan and Thai, Ngoc Anh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.12.10.143},
  URN =		{urn:nbn:de:0030-drops-178247},
  doi =		{10.4230/DagRep.12.10.143},
  annote =	{Keywords: developmental psychology, human learning, machine learning, computer vision, language learning}
}
Document
Tight Bounds for Connectivity Problems Parameterized by Cutwidth

Authors: Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
In this work we start the investigation of tight complexity bounds for connectivity problems parameterized by cutwidth assuming the Strong Exponential-Time Hypothesis (SETH). Van Geffen et al. [Bas A. M. van Geffen et al., 2020] posed this question for Odd Cycle Transversal and Feedback Vertex Set. We answer it for these two and four further problems, namely Connected Vertex Cover, Connected Dominating Set, Steiner Tree, and Connected Odd Cycle Transversal. For the latter two problems it sufficed to prove lower bounds that match the running time inherited from parameterization by treewidth; for the others we provide faster algorithms than relative to treewidth and prove matching lower bounds. For upper bounds we first extend the idea of Groenland et al. [Carla Groenland et al., 2022] to solve what we call coloring-like problems. Such problems are defined by a symmetric matrix M over 𝔽₂ indexed by a set of colors. The goal is to count the number (modulo some prime p) of colorings of a graph such that M has a 1-entry if indexed by the colors of the end-points of any edge. We show that this problem can be solved faster if M has small rank over 𝔽_p. We apply this result to get our upper bounds for CVC and CDS. The upper bounds for OCT and FVS use a subdivision trick to get below the bounds that matrix rank would yield.

Cite as

Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch. Tight Bounds for Connectivity Problems Parameterized by Cutwidth. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bojikian_et_al:LIPIcs.STACS.2023.14,
  author =	{Bojikian, Narek and Chekan, Vera and Hegerfeld, Falko and Kratsch, Stefan},
  title =	{{Tight Bounds for Connectivity Problems Parameterized by Cutwidth}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.14},
  URN =		{urn:nbn:de:0030-drops-176667},
  doi =		{10.4230/LIPIcs.STACS.2023.14},
  annote =	{Keywords: Parameterized complexity, connectivity problems, cutwidth}
}
Document
Brief Announcement
Brief Announcement: Minimizing Congestion in Hybrid Demand-Aware Network Topologies

Authors: Wenkai Dai, Michael Dinitz, Klaus-Tycho Foerster, and Stefan Schmid

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
Emerging reconfigurable optical communication technologies enable demand-aware networks: networks whose static topology can be enhanced with demand-aware links optimized towards the traffic pattern the network serves. This paper studies the algorithmic problem of how to jointly optimize the topology and the routing in such demand-aware networks, to minimize congestion. We investigate this problem along two dimensions: (1) whether flows are splittable or unsplittable, and (2) whether routing on the hybrid topology is segregated or not, i.e., whether or not flows either have to use exclusively either the static network or the demand-aware connections. For splittable and segregated routing, we show that the problem is 2-approximable in general, but APX-hard even for uniform demands induced by a bipartite demand graph. For unsplittable and segregated routing, we show an upper bound of O(log m/ log log m) and a lower bound of Ω(log m/ log log m) for polynomial-time approximation algorithms, where m is the number of static links. Under splittable (resp., unsplittable) and non-segregated routing, even for demands of a single source (resp., destination), the problem cannot be approximated better than Ω(c_{max}/c_{min}) unless P=NP, where c_{max} (resp., c_{min}) denotes the maximum (resp., minimum) capacity. It is still NP-hard for uniform capacities, but can be solved efficiently for a single commodity and uniform capacities.

Cite as

Wenkai Dai, Michael Dinitz, Klaus-Tycho Foerster, and Stefan Schmid. Brief Announcement: Minimizing Congestion in Hybrid Demand-Aware Network Topologies. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 42:1-42:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dai_et_al:LIPIcs.DISC.2022.42,
  author =	{Dai, Wenkai and Dinitz, Michael and Foerster, Klaus-Tycho and Schmid, Stefan},
  title =	{{Brief Announcement: Minimizing Congestion in Hybrid Demand-Aware Network Topologies}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{42:1--42:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.42},
  URN =		{urn:nbn:de:0030-drops-172330},
  doi =		{10.4230/LIPIcs.DISC.2022.42},
  annote =	{Keywords: Congestion, Reconfigurable Networks, Algorithms, Complexity}
}
Document
RANDOM
A Sublinear Local Access Implementation for the Chinese Restaurant Process

Authors: Peter Mörters, Christian Sohler, and Stefan Walzer

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
The Chinese restaurant process is a stochastic process closely related to the Dirichlet process that groups sequentially arriving objects into a variable number of classes, such that within each class objects are cyclically ordered. A popular description involves a restaurant, where customers arrive one by one and either sit down next to a randomly chosen customer at one of the existing tables or open a new table. The full state of the process after n steps is given by a permutation of the n objects and cannot be represented in sublinear space. In particular, if we only need specific information about a few objects or classes it would be preferable to obtain the answers without simulating the process completely. A recent line of research [Oded Goldreich et al., 2010; Moni Naor and Asaf Nussboim, 2007; Amartya Shankha Biswas et al., 2020; Guy Even et al., 2021] attempts to provide access to huge random objects without fully instantiating them. Such local access implementations provide answers to a sequence of queries about the random object, following the same distribution as if the object was fully generated. In this paper, we provide a local access implementation for a generalization of the Chinese restaurant process described above. Our implementation can be used to answer any sequence of adaptive queries about class affiliation of objects, number and sizes of classes at any time, position of elements within a class, or founding time of a class. The running time per query is polylogarithmic in the total size of the object, with high probability. Our approach relies on some ideas from the recent local access implementation for preferential attachment trees by Even et al. [Guy Even et al., 2021]. Such trees are related to the Chinese restaurant process in the sense that both involve a "rich-get-richer" phenomenon. A novel ingredient in our implementation is to embed the process in continuous time, in which the evolution of the different classes becomes stochastically independent [Joyce and Tavaré, 1987]. This independence is used to keep the probabilistic structure manageable even if many queries have already been answered. As similar embeddings are available for a wide range of urn processes [Krishna B. Athreya and Samuel Karlin, 1968], we believe that our approach may be applicable more generally. Moreover, local access implementations for birth and death processes that we encounter along the way may be of independent interest.

Cite as

Peter Mörters, Christian Sohler, and Stefan Walzer. A Sublinear Local Access Implementation for the Chinese Restaurant Process. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{morters_et_al:LIPIcs.APPROX/RANDOM.2022.28,
  author =	{M\"{o}rters, Peter and Sohler, Christian and Walzer, Stefan},
  title =	{{A Sublinear Local Access Implementation for the Chinese Restaurant Process}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{28:1--28:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.28},
  URN =		{urn:nbn:de:0030-drops-171500},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.28},
  annote =	{Keywords: Chinese restaurant process, Dirichlet process, sublinear time algorithm, random recursive tree, random permutation, random partition, Ewens distribution, simulation, local access implementation, continuous time embedding}
}
Document
Extending Partial Representations of Circle Graphs in Near-Linear Time

Authors: Guido Brückner, Ignaz Rutter, and Peter Stumpf

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph H ⊆ G and a representation H of H. The question is whether G admits a representation G whose restriction to H is H. We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in O((n + m) α(n + m)) time, where α is the inverse Ackermann function. This improves over an O(n³)-time algorithm by Chaplick, Fulek and Klavík [2019]. The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest.

Cite as

Guido Brückner, Ignaz Rutter, and Peter Stumpf. Extending Partial Representations of Circle Graphs in Near-Linear Time. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 25:1-25:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bruckner_et_al:LIPIcs.MFCS.2022.25,
  author =	{Br\"{u}ckner, Guido and Rutter, Ignaz and Stumpf, Peter},
  title =	{{Extending Partial Representations of Circle Graphs in Near-Linear Time}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.25},
  URN =		{urn:nbn:de:0030-drops-168233},
  doi =		{10.4230/LIPIcs.MFCS.2022.25},
  annote =	{Keywords: circle graphs, partial representation extension, split decomposition tree, recognition algorithm}
}
Document
On Algorithms Based on Finitely Many Homomorphism Counts

Authors: Yijia Chen, Jörg Flum, Mingjun Liu, and Zhiyang Xun

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
It is well known [L. Lovász, 1967] that up to isomorphism a graph G is determined by the homomorphism counts hom(F, G), i.e., by the number of homomorphisms from F to G where F ranges over all graphs. Moreover, it suffices that F ranges over the graphs with at most as many vertices as G. Thus, in principle, we can answer any query concerning G with only accessing the hom(⋅, G)’s instead of G itself. In this paper, we deal with queries for which there is a hom algorithm, i.e., there are finitely many graphs F₁, …, F_k such that for any graph G whether it is a Yes-instance of the query is already determined by the vector hom^⟶_{F₁, …, F_k}(G): = (hom(F₁, G), …, hom(F_k, G)). We observe that planarity of graphs and 3-colorability of graphs, properties expressible in monadic second-order logic, have no hom algorithm. On the other hand, queries expressible as a Boolean combination of universal sentences in first-order logic FO have a hom algorithm. Even though it is not easy to find FO definable queries without a hom algorithm, we succeed to show this for the non-existence of an isolated vertex, a property expressible by the FO sentence ∀ x∃ y Exy, somehow the "simplest" graph property not definable by a Boolean combination of universal sentences. These results provide a characterization of the prefix classes of first-order logic with the property that each query definable by a sentence of the prefix class has a hom algorithm. For adaptive hom algorithms, i.e., algorithms that might access a hom(F_{i+1}, G) with F_{i+1} depending on hom(F_j, G) for 1 ≤ j ≤ i we show that three homomorphism counts hom(⋅, G) are sufficient and in general necessary to determine the (isomorphism type of) G. In particular, by three adaptive queries we can answer any question on G. Moreover, adaptively accessing two hom(⋅, G)’s is already enough to detect an isolated vertex. In 1993 Chaudhuri and Vardi [S. Chaudhuri and M. Y. Vardi, 1993] showed the analogue of the Lovász Isomorphism Theorem for the right homomorphism vector of a graph G, i.e, the vector of values hom(G,F) where F ranges over all graphs characterizes the isomorphism type of G. We study to what extent our results carry over to the right homomorphism vector.

Cite as

Yijia Chen, Jörg Flum, Mingjun Liu, and Zhiyang Xun. On Algorithms Based on Finitely Many Homomorphism Counts. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 32:1-32:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.MFCS.2022.32,
  author =	{Chen, Yijia and Flum, J\"{o}rg and Liu, Mingjun and Xun, Zhiyang},
  title =	{{On Algorithms Based on Finitely Many Homomorphism Counts}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{32:1--32:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.32},
  URN =		{urn:nbn:de:0030-drops-168301},
  doi =		{10.4230/LIPIcs.MFCS.2022.32},
  annote =	{Keywords: homomorphism numbers, hom algorithms, adaptive hom algorithms}
}
Document
CNF Encodings of Parity

Authors: Gregory Emdin, Alexander S. Kulikov, Ivan Mihajlin, and Nikita Slezkin

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The minimum number of clauses in a CNF representation of the parity function x₁ ⊕ x₂ ⊕ … ⊕ x_n is 2^{n-1}. One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number m of clauses and the maximum width k of clauses: 1) if there are at most s auxiliary variables, then m ≥ Ω(2^{n/(s+1)}/n) and k ≥ n/(s+1); 2) the minimum number of clauses is at least 3n. We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlák, and Zane using a tight connection between CNF encodings and depth-3 circuits. In particular, we show that lower bounds on the size of a CNF encoding of a Boolean function imply depth-3 circuit lower bounds for this function.

Cite as

Gregory Emdin, Alexander S. Kulikov, Ivan Mihajlin, and Nikita Slezkin. CNF Encodings of Parity. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 47:1-47:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{emdin_et_al:LIPIcs.MFCS.2022.47,
  author =	{Emdin, Gregory and Kulikov, Alexander S. and Mihajlin, Ivan and Slezkin, Nikita},
  title =	{{CNF Encodings of Parity}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{47:1--47:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.47},
  URN =		{urn:nbn:de:0030-drops-168455},
  doi =		{10.4230/LIPIcs.MFCS.2022.47},
  annote =	{Keywords: encoding, parity, lower bounds, circuits, CNF}
}
Document
The Hamilton Compression of Highly Symmetric Graphs

Authors: Petr Gregor, Arturo Merino, and Torsten Mütze

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We say that a Hamilton cycle C = (x₁,…,x_n) in a graph G is k-symmetric, if the mapping x_i ↦ x_{i+n/k} for all i = 1,…,n, where indices are considered modulo n, is an automorphism of G. In other words, if we lay out the vertices x₁,…,x_n equidistantly on a circle and draw the edges of G as straight lines, then the drawing of G has k-fold rotational symmetry, i.e., all information about the graph is compressed into a 360^∘/k wedge of the drawing. We refer to the maximum k for which there exists a k-symmetric Hamilton cycle in G as the Hamilton compression of G. We investigate the Hamilton compression of four different families of vertex-transitive graphs, namely hypercubes, Johnson graphs, permutahedra and Cayley graphs of abelian groups. In several cases we determine their Hamilton compression exactly, and in other cases we provide close lower and upper bounds. The cycles we construct have a much higher compression than several classical Gray codes known from the literature. Our constructions also yield Gray codes for bitstrings, combinations and permutations that have few tracks and/or that are balanced.

Cite as

Petr Gregor, Arturo Merino, and Torsten Mütze. The Hamilton Compression of Highly Symmetric Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 54:1-54:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gregor_et_al:LIPIcs.MFCS.2022.54,
  author =	{Gregor, Petr and Merino, Arturo and M\"{u}tze, Torsten},
  title =	{{The Hamilton Compression of Highly Symmetric Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{54:1--54:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.54},
  URN =		{urn:nbn:de:0030-drops-168529},
  doi =		{10.4230/LIPIcs.MFCS.2022.54},
  annote =	{Keywords: Hamilton cycle, Gray code, hypercube, permutahedron, Johnson graph, Cayley graph, abelian group, vertex-transitive}
}
Document
Membership Problems in Finite Groups

Authors: Markus Lohrey, Andreas Rosowski, and Georg Zetzsche

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We show that the subset sum problem, the knapsack problem and the rational subset membership problem for permutation groups are NP-complete. Concerning the knapsack problem we obtain NP-completeness for every fixed n ≥ 3, where n is the number of permutations in the knapsack equation. In other words: membership in products of three cyclic permutation groups is NP-complete. This sharpens a result of Luks [Eugene M. Luks, 1991], which states NP-completeness of the membership problem for products of three abelian permutation groups. We also consider the context-free membership problem in permutation groups and prove that it is PSPACE-complete but NP-complete for a restricted class of context-free grammars where acyclic derivation trees must have constant Horton-Strahler number. Our upper bounds hold for black box groups. The results for context-free membership problems in permutation groups yield new complexity bounds for various intersection non-emptiness problems for DFAs and a single context-free grammar.

Cite as

Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. Membership Problems in Finite Groups. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 71:1-71:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lohrey_et_al:LIPIcs.MFCS.2022.71,
  author =	{Lohrey, Markus and Rosowski, Andreas and Zetzsche, Georg},
  title =	{{Membership Problems in Finite Groups}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{71:1--71:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.71},
  URN =		{urn:nbn:de:0030-drops-168694},
  doi =		{10.4230/LIPIcs.MFCS.2022.71},
  annote =	{Keywords: algorithms for finite groups, intersection non-emptiness problems, knapsack problems in groups}
}
Document
An Exact Algorithm for Knot-Free Vertex Deletion

Authors: M. S. Ramanujan, Abhishek Sahu, Saket Saurabh, and Shaily Verma

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The study of the Knot-Free Vertex Deletion problem emerges from its application in the resolution of deadlocks called knots, detected in a classical distributed computation model, that is, the OR-model. A strongly connected subgraph Q of a digraph D with at least two vertices is said to be a knot if there is no arc (u,v) of D with u ∈ V(Q) and v ∉ V(Q) (no-out neighbors of the vertices in Q). Given a directed graph D, the Knot-Free Vertex Deletion (KFVD) problem asks to compute a minimum-size subset S ⊂ V(D) such that D[V⧵S] contains no knots. There is no exact algorithm known for the KFVD problem in the literature that is faster than the trivial O^⋆(2ⁿ) brute-force algorithm. In this paper, we obtain the first non-trivial upper bound for KFVD by designing an exact algorithm running in time 𝒪^⋆(1.576ⁿ), where n is the size of the vertex set in D.

Cite as

M. S. Ramanujan, Abhishek Sahu, Saket Saurabh, and Shaily Verma. An Exact Algorithm for Knot-Free Vertex Deletion. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 78:1-78:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ramanujan_et_al:LIPIcs.MFCS.2022.78,
  author =	{Ramanujan, M. S. and Sahu, Abhishek and Saurabh, Saket and Verma, Shaily},
  title =	{{An Exact Algorithm for Knot-Free Vertex Deletion}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{78:1--78:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.78},
  URN =		{urn:nbn:de:0030-drops-168769},
  doi =		{10.4230/LIPIcs.MFCS.2022.78},
  annote =	{Keywords: exact algorithm, knot-free graphs, branching algorithm}
}
Document
On Extended Boundary Sequences of Morphic and Sturmian Words

Authors: Michel Rigo, Manon Stipulanti, and Markus A. Whiteland

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Generalizing the notion of the boundary sequence introduced by Chen and Wen, the nth term of the 𝓁-boundary sequence of an infinite word is the finite set of pairs (u,v) of prefixes and suffixes of length 𝓁 appearing in factors uyv of length n+𝓁 (n ≥ 𝓁 ≥ 1). Otherwise stated, for increasing values of n, one looks for all pairs of factors of length 𝓁 separated by n-𝓁 symbols. For the large class of addable numeration systems U, we show that if an infinite word is U-automatic, then the same holds for its 𝓁-boundary sequence. In particular, they are both morphic (or generated by an HD0L system). We also provide examples of numeration systems and U-automatic words with a boundary sequence that is not U-automatic. In the second part of the paper, we study the 𝓁-boundary sequence of a Sturmian word. We show that it is obtained through a sliding block code from the characteristic Sturmian word of the same slope. We also show that it is the image under a morphism of some other characteristic Sturmian word.

Cite as

Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. On Extended Boundary Sequences of Morphic and Sturmian Words. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 79:1-79:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{rigo_et_al:LIPIcs.MFCS.2022.79,
  author =	{Rigo, Michel and Stipulanti, Manon and Whiteland, Markus A.},
  title =	{{On Extended Boundary Sequences of Morphic and Sturmian Words}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{79:1--79:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.79},
  URN =		{urn:nbn:de:0030-drops-168776},
  doi =		{10.4230/LIPIcs.MFCS.2022.79},
  annote =	{Keywords: Boundary sequences, Sturmian words, Numeration systems, Automata, Graph of addition}
}
  • Refine by Author
  • 8 Kratsch, Stefan
  • 4 Walzer, Stefan
  • 3 Dietzfelbinger, Martin
  • 3 Jackson, Lisa M.
  • 3 Kiefer, Stefan
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Parameterized complexity and exact algorithms
  • 4 Mathematics of computing → Graph theory
  • 4 Theory of computation → Data structures design and analysis
  • 4 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Fixed parameter tractability
  • Show More...

  • Refine by Keyword
  • 3 Hashing
  • 3 Retrieval
  • 3 Succinct Data Structure
  • 3 lower bounds
  • 3 parameterized complexity
  • Show More...

  • Refine by Type
  • 64 document

  • Refine by Publication Year
  • 9 2019
  • 9 2022
  • 6 2016
  • 5 2020
  • 5 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail