1 Search Results for "Maarand, Hendrik"


Document
Reordering Derivatives of Trace Closures of Regular Languages

Authors: Hendrik Maarand and Tarmo Uustalu

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
We provide syntactic derivative-like operations, defined by recursion on regular expressions, in the styles of both Brzozowski and Antimirov, for trace closures of regular languages. Just as the Brzozowski and Antimirov derivative operations for regular languages, these syntactic reordering derivative operations yield deterministic and nondeterministic automata respectively. But trace closures of regular languages are in general not regular, hence these automata cannot generally be finite. Still, as we show, for star-connected expressions, the Antimirov and Brzozowski automata, suitably quotiented, are finite. We also define a refined version of the Antimirov reordering derivative operation where parts-of-derivatives (states of the automaton) are nonempty lists of regular expressions rather than single regular expressions. We define the uniform scattering rank of a language and show that, for a regexp whose language has finite uniform scattering rank, the truncation of the (generally infinite) refined Antimirov automaton, obtained by removing long states, is finite without any quotienting, but still accepts the trace closure. We also show that star-connected languages have finite uniform scattering rank.

Cite as

Hendrik Maarand and Tarmo Uustalu. Reordering Derivatives of Trace Closures of Regular Languages. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{maarand_et_al:LIPIcs.CONCUR.2019.40,
  author =	{Maarand, Hendrik and Uustalu, Tarmo},
  title =	{{Reordering Derivatives of Trace Closures of Regular Languages}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{40:1--40:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.40},
  URN =		{urn:nbn:de:0030-drops-109426},
  doi =		{10.4230/LIPIcs.CONCUR.2019.40},
  annote =	{Keywords: Mazurkiewicz traces, trace closure, regular languages, finite automata, language derivatives, scattering rank, star-connected expressions}
}
  • Refine by Author
  • 1 Maarand, Hendrik
  • 1 Uustalu, Tarmo

  • Refine by Classification
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Regular languages

  • Refine by Keyword
  • 1 Mazurkiewicz traces
  • 1 finite automata
  • 1 language derivatives
  • 1 regular languages
  • 1 scattering rank
  • Show More...

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail