8 Search Results for "Makam, Visu"


Document
On Identity Testing and Noncommutative Rank Computation over the Free Skew Field

Authors: V. Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and C. Ramya

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
The identity testing of rational formulas (RIT) in the free skew field efficiently reduces to computing the rank of a matrix whose entries are linear polynomials in noncommuting variables [Hrubeš and Wigderson, 2015]. This rank computation problem has deterministic polynomial-time white-box algorithms [Ankit Garg et al., 2016; Ivanyos et al., 2018] and a randomized polynomial-time algorithm in the black-box setting [Harm Derksen and Visu Makam, 2017]. In this paper, we propose a new approach for efficient derandomization of black-box RIT. Additionally, we obtain results for matrix rank computation over the free skew field and construct efficient linear pencil representations for a new class of rational expressions. More precisely, we show: - Under the hardness assumption that the ABP (algebraic branching program) complexity of every polynomial identity for the k×k matrix algebra is 2^Ω(k) [Andrej Bogdanov and Hoeteck Wee, 2005], we obtain a subexponential-time black-box RIT algorithm for rational formulas of inversion height almost logarithmic in the size of the formula. This can be seen as the first "hardness implies derandomization" type theorem for rational formulas. - We show that the noncommutative rank of any matrix over the free skew field whose entries have small linear pencil representations can be computed in deterministic polynomial time. While an efficient rank computation was known for matrices with noncommutative formulas as entries [Ankit Garg et al., 2020], we obtain the first deterministic polynomial-time algorithms for rank computation of matrices whose entries are noncommutative ABPs or rational formulas. - Motivated by the definition given by Bergman [George M Bergman, 1976], we define a new class of rational functions where a rational function of inversion height at most h is defined as a composition of a noncommutative r-skewed circuit (equivalently an ABP) with inverses of rational functions of this class of inversion height at most h-1 which are also disjoint. We obtain a polynomial-size linear pencil representation for this class which gives a white-box deterministic polynomial-time identity testing algorithm for the class.

Cite as

V. Arvind, Abhranil Chatterjee, Utsab Ghosal, Partha Mukhopadhyay, and C. Ramya. On Identity Testing and Noncommutative Rank Computation over the Free Skew Field. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.ITCS.2023.6,
  author =	{Arvind, V. and Chatterjee, Abhranil and Ghosal, Utsab and Mukhopadhyay, Partha and Ramya, C.},
  title =	{{On Identity Testing and Noncommutative Rank Computation over the Free Skew Field}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.6},
  URN =		{urn:nbn:de:0030-drops-175093},
  doi =		{10.4230/LIPIcs.ITCS.2023.6},
  annote =	{Keywords: Algebraic Complexity, Identity Testing, Non-commutative rank}
}
Document
Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors

Authors: Harm Derksen, Visu Makam, and Jeroen Zuiddam

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
Since the seminal works of Strassen and Valiant it has been a central theme in algebraic complexity theory to understand the relative complexity of algebraic problems, that is, to understand which algebraic problems (be it bilinear maps like matrix multiplication in Strassen’s work, or the determinant and permanent polynomials in Valiant’s) can be reduced to each other (under the appropriate notion of reduction). In this paper we work in the setting of bilinear maps and with the usual notion of reduction that allows applying linear maps to the inputs and output of a bilinear map in order to compute another bilinear map. As our main result we determine precisely how many independent scalar multiplications can be reduced to a given bilinear map (this number is called the subrank, and extends the concept of matrix diagonalization to tensors), for essentially all (i.e. generic) bilinear maps. Namely, we prove for a generic bilinear map T : V × V → V where dim(V) = n that θ(√n) independent scalar multiplications can be reduced to T. Our result significantly improves on the previous upper bound from the work of Strassen (1991) and Bürgisser (1990) which was n^{2/3 + o(1)}. Our result is very precise and tight up to an additive constant. Our full result is much more general and applies not only to bilinear maps and 3-tensors but also to k-tensors, for which we find that the generic subrank is θ(n^{1/(k-1)}). Moreover, as an application we prove that the subrank is not additive under the direct sum. The subrank plays a central role in several areas of complexity theory (matrix multiplication algorithms, barrier results) and combinatorics (e.g., the cap set problem and sunflower problem). As a consequence of our result we obtain several large separations between the subrank and tensor methods that have received much interest recently, notably the slice rank (Tao, 2016), analytic rank (Gowers-Wolf, 2011; Lovett, 2018; Bhrushundi-Harsha-Hatami-Kopparty-Kumar, 2020), geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020), and G-stable rank (Derksen, 2020). Our proofs of the lower bounds rely on a new technical result about an optimal decomposition of tensor space into structured subspaces, which we think may be of independent interest.

Cite as

Harm Derksen, Visu Makam, and Jeroen Zuiddam. Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2022.9,
  author =	{Derksen, Harm and Makam, Visu and Zuiddam, Jeroen},
  title =	{{Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.9},
  URN =		{urn:nbn:de:0030-drops-165716},
  doi =		{10.4230/LIPIcs.CCC.2022.9},
  annote =	{Keywords: tensors, bilinear maps, complexity, subrank, diagonalization, generic tensors, random tensors, reduction, slice rank}
}
Document
Symbolic Determinant Identity Testing and Non-Commutative Ranks of Matrix Lie Algebras

Authors: Gábor Ivanyos, Tushant Mittal, and Youming Qiao

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
One approach to make progress on the symbolic determinant identity testing (SDIT) problem is to study the structure of singular matrix spaces. After settling the non-commutative rank problem (Garg-Gurvits-Oliveira-Wigderson, Found. Comput. Math. 2020; Ivanyos-Qiao-Subrahmanyam, Comput. Complex. 2018), a natural next step is to understand singular matrix spaces whose non-commutative rank is full. At present, examples of such matrix spaces are mostly sporadic, so it is desirable to discover them in a more systematic way. In this paper, we make a step towards this direction, by studying the family of matrix spaces that are closed under the commutator operation, that is, matrix Lie algebras. On the one hand, we demonstrate that matrix Lie algebras over the complex number field give rise to singular matrix spaces with full non-commutative ranks. On the other hand, we show that SDIT of such spaces can be decided in deterministic polynomial time. Moreover, we give a characterization for the matrix Lie algebras to yield a matrix space possessing singularity certificates as studied by Lovász (B. Braz. Math. Soc., 1989) and Raz and Wigderson (Building Bridges II, 2019).

Cite as

Gábor Ivanyos, Tushant Mittal, and Youming Qiao. Symbolic Determinant Identity Testing and Non-Commutative Ranks of Matrix Lie Algebras. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 87:1-87:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ivanyos_et_al:LIPIcs.ITCS.2022.87,
  author =	{Ivanyos, G\'{a}bor and Mittal, Tushant and Qiao, Youming},
  title =	{{Symbolic Determinant Identity Testing and Non-Commutative Ranks of Matrix Lie Algebras}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{87:1--87:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.87},
  URN =		{urn:nbn:de:0030-drops-156837},
  doi =		{10.4230/LIPIcs.ITCS.2022.87},
  annote =	{Keywords: derandomization, polynomial identity testing, symbolic determinant, non-commutative rank, Lie algebras}
}
Document
Barriers for Recent Methods in Geodesic Optimization

Authors: W. Cole Franks and Philipp Reichenbach

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We study a class of optimization problems including matrix scaling, matrix balancing, multidimensional array scaling, operator scaling, and tensor scaling that arise frequently in theory and in practice. Some of these problems, such as matrix and array scaling, are convex in the Euclidean sense, but others such as operator scaling and tensor scaling are geodesically convex on a different Riemannian manifold. Trust region methods, which include box-constrained Newton’s method, are known to produce high precision solutions very quickly for matrix scaling and matrix balancing (Cohen et. al., FOCS 2017, Allen-Zhu et. al. FOCS 2017), and result in polynomial time algorithms for some geodesically convex problems like operator scaling (Garg et. al. STOC 2018, Bürgisser et. al. FOCS 2019). One is led to ask whether these guarantees also hold for multidimensional array scaling and tensor scaling. We show that this is not the case by exhibiting instances with exponential diameter bound: we construct polynomial-size instances of 3-dimensional array scaling and 3-tensor scaling whose approximate solutions all have doubly exponential condition number. Moreover, we study convex-geometric notions of complexity known as margin and gap, which are used to bound the running times of all existing optimization algorithms for such problems. We show that margin and gap are exponentially small for several problems including array scaling, tensor scaling and polynomial scaling. Our results suggest that it is impossible to prove polynomial running time bounds for tensor scaling based on diameter bounds alone. Therefore, our work motivates the search for analogues of more sophisticated algorithms, such as interior point methods, for geodesically convex optimization that do not rely on polynomial diameter bounds.

Cite as

W. Cole Franks and Philipp Reichenbach. Barriers for Recent Methods in Geodesic Optimization. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 13:1-13:54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{franks_et_al:LIPIcs.CCC.2021.13,
  author =	{Franks, W. Cole and Reichenbach, Philipp},
  title =	{{Barriers for Recent Methods in Geodesic Optimization}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{13:1--13:54},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.13},
  URN =		{urn:nbn:de:0030-drops-142879},
  doi =		{10.4230/LIPIcs.CCC.2021.13},
  annote =	{Keywords: Geodesically Convex Optimization, Weight Margin, Moment Polytope, Diameter Bounds, Tensor Scaling, Matrix Scaling}
}
Document
Polynomial Time Algorithms in Invariant Theory for Torus Actions

Authors: Peter Bürgisser, M. Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
An action of a group on a vector space partitions the latter into a set of orbits. We consider three natural and useful algorithmic "isomorphism" or "classification" problems, namely, orbit equality, orbit closure intersection, and orbit closure containment. These capture and relate to a variety of problems within mathematics, physics and computer science, optimization and statistics. These orbit problems extend the more basic null cone problem, whose algorithmic complexity has seen significant progress in recent years. In this paper, we initiate a study of these problems by focusing on the actions of commutative groups (namely, tori). We explain how this setting is motivated from questions in algebraic complexity, and is still rich enough to capture interesting combinatorial algorithmic problems. While the structural theory of commutative actions is well understood, no general efficient algorithms were known for the aforementioned problems. Our main results are polynomial time algorithms for all three problems. We also show how to efficiently find separating invariants for orbits, and how to compute systems of generating rational invariants for these actions (in contrast, for polynomial invariants the latter is known to be hard). Our techniques are based on a combination of fundamental results in invariant theory, linear programming, and algorithmic lattice theory.

Cite as

Peter Bürgisser, M. Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Polynomial Time Algorithms in Invariant Theory for Torus Actions. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 32:1-32:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{burgisser_et_al:LIPIcs.CCC.2021.32,
  author =	{B\"{u}rgisser, Peter and Do\u{g}an, M. Levent and Makam, Visu and Walter, Michael and Wigderson, Avi},
  title =	{{Polynomial Time Algorithms in Invariant Theory for Torus Actions}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{32:1--32:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.32},
  URN =		{urn:nbn:de:0030-drops-143062},
  doi =		{10.4230/LIPIcs.CCC.2021.32},
  annote =	{Keywords: computational invariant theory, geometric complexity theory, orbit closure intersection problem}
}
Document
Invited Talk
Optimization, Complexity and Invariant Theory (Invited Talk)

Authors: Peter Bürgisser

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Invariant and representation theory studies symmetries by means of group actions and is a well established source of unifying principles in mathematics and physics. Recent research suggests its relevance for complexity and optimization through quantitative and algorithmic questions. The goal of the talk is to give an introduction to new algorithmic and analysis techniques that extend convex optimization from the classical Euclidean setting to a general geodesic setting. We also point out surprising connections to a diverse set of problems in different areas of mathematics, statistics, computer science, and physics.

Cite as

Peter Bürgisser. Optimization, Complexity and Invariant Theory (Invited Talk). In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{burgisser:LIPIcs.STACS.2021.1,
  author =	{B\"{u}rgisser, Peter},
  title =	{{Optimization, Complexity and Invariant Theory}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.1},
  URN =		{urn:nbn:de:0030-drops-136460},
  doi =		{10.4230/LIPIcs.STACS.2021.1},
  annote =	{Keywords: geometric invariant theory, geodesic optimization, non-commutative optimization, null cone, operator scaling, moment polytope, orbit closure intersection, geometric programming}
}
Document
Search Problems in Algebraic Complexity, GCT, and Hardness of Generators for Invariant Rings

Authors: Ankit Garg, Christian Ikenmeyer, Visu Makam, Rafael Oliveira, Michael Walter, and Avi Wigderson

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We consider the problem of computing succinct encodings of lists of generators for invariant rings for group actions. Mulmuley conjectured that there are always polynomial sized such encodings for invariant rings of SL_n(ℂ)-representations. We provide simple examples that disprove this conjecture (under standard complexity assumptions). We develop a general framework, denoted algebraic circuit search problems, that captures many important problems in algebraic complexity and computational invariant theory. This framework encompasses various proof systems in proof complexity and some of the central problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) program, including the aforementioned problem of computing succinct encodings for generators for invariant rings.

Cite as

Ankit Garg, Christian Ikenmeyer, Visu Makam, Rafael Oliveira, Michael Walter, and Avi Wigderson. Search Problems in Algebraic Complexity, GCT, and Hardness of Generators for Invariant Rings. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.CCC.2020.12,
  author =	{Garg, Ankit and Ikenmeyer, Christian and Makam, Visu and Oliveira, Rafael and Walter, Michael and Wigderson, Avi},
  title =	{{Search Problems in Algebraic Complexity, GCT, and Hardness of Generators for Invariant Rings}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.12},
  URN =		{urn:nbn:de:0030-drops-125645},
  doi =		{10.4230/LIPIcs.CCC.2020.12},
  annote =	{Keywords: generators for invariant rings, succinct encodings}
}
Document
RANDOM
Efficient Black-Box Identity Testing for Free Group Algebras

Authors: V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Hrubeš and Wigderson [Pavel Hrubeš and Avi Wigderson, 2014] initiated the study of noncommutative arithmetic circuits with division computing a noncommutative rational function in the free skew field, and raised the question of rational identity testing. For noncommutative formulas with inverses the problem can be solved in deterministic polynomial time in the white-box model [Ankit Garg et al., 2016; Ivanyos et al., 2018]. It can be solved in randomized polynomial time in the black-box model [Harm Derksen and Visu Makam, 2017], where the running time is polynomial in the size of the formula. The complexity of identity testing of noncommutative rational functions, in general, remains open for noncommutative circuits with inverses. We solve the problem for a natural special case. We consider expressions in the free group algebra F(X,X^{-1}) where X={x_1, x_2, ..., x_n}. Our main results are the following. 1) Given a degree d expression f in F(X,X^{-1}) as a black-box, we obtain a randomized poly(n,d) algorithm to check whether f is an identically zero expression or not. The technical contribution is an Amitsur-Levitzki type theorem [A. S. Amitsur and J. Levitzki, 1950] for F(X, X^{-1}). This also yields a deterministic identity testing algorithm (and even an expression reconstruction algorithm) that is polynomial time in the sparsity of the input expression. 2) Given an expression f in F(X,X^{-1}) of degree D and sparsity s, as black-box, we can check whether f is identically zero or not in randomized poly(n,log s, log D) time. This yields a randomized polynomial-time algorithm when D and s are exponential in n.

Cite as

V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. Efficient Black-Box Identity Testing for Free Group Algebras. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 57:1-57:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.APPROX-RANDOM.2019.57,
  author =	{Arvind, V. and Chatterjee, Abhranil and Datta, Rajit and Mukhopadhyay, Partha},
  title =	{{Efficient Black-Box Identity Testing for Free Group Algebras}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{57:1--57:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.57},
  URN =		{urn:nbn:de:0030-drops-112723},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.57},
  annote =	{Keywords: Rational identity testing, Free group algebra, Noncommutative computation, Randomized algorithms}
}
  • Refine by Author
  • 3 Makam, Visu
  • 2 Arvind, V.
  • 2 Bürgisser, Peter
  • 2 Chatterjee, Abhranil
  • 2 Mukhopadhyay, Partha
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Algebraic complexity theory
  • 2 Theory of computation → Continuous optimization
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Mathematics of computing → Combinatorics
  • 1 Theory of computation
  • Show More...

  • Refine by Keyword
  • 1 Algebraic Complexity
  • 1 Diameter Bounds
  • 1 Free group algebra
  • 1 Geodesically Convex Optimization
  • 1 Identity Testing
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 3 2021
  • 2 2022
  • 1 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail