4 Search Results for "Maristany, Pedro"


Document
An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

Authors: Marco Blanco, Ralf Borndörfer, and Pedro Maristany de las Casas

Published in: OASIcs, Volume 106, 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)


Abstract
The Flight Planning Problem is to find a minimum fuel trajectory between two airports in a 3D airway network under consideration of the wind. We show that this problem is NP-hard, even in its most basic version. We then present a novel A* heuristic, whose potential function is derived from an idealized vertical profile over the remaining flight distance. This potential is, under rather general assumptions, both admissible and consistent and it can be computed efficiently. The method outperforms the state-of-the-art heuristic on real-life instances.

Cite as

Marco Blanco, Ralf Borndörfer, and Pedro Maristany de las Casas. An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), Volume 106, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blanco_et_al:OASIcs.ATMOS.2022.1,
  author =	{Blanco, Marco and Bornd\"{o}rfer, Ralf and Maristany de las Casas, Pedro},
  title =	{{An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles}},
  booktitle =	{22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)},
  pages =	{1:1--1:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-259-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{106},
  editor =	{D'Emidio, Mattia and Lindner, Niels},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2022.1},
  URN =		{urn:nbn:de:0030-drops-171052},
  doi =		{10.4230/OASIcs.ATMOS.2022.1},
  annote =	{Keywords: shortest path problem, a-star algorithm, flight trajectory optimization, flight planning, heuristics}
}
Document
Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data

Authors: Niels Lindner, Pedro Maristany de las Casas, and Philine Schiewe

Published in: OASIcs, Volume 96, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)


Abstract
We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport.

Cite as

Niels Lindner, Pedro Maristany de las Casas, and Philine Schiewe. Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data. In 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021). Open Access Series in Informatics (OASIcs), Volume 96, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lindner_et_al:OASIcs.ATMOS.2021.7,
  author =	{Lindner, Niels and Maristany de las Casas, Pedro and Schiewe, Philine},
  title =	{{Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data}},
  booktitle =	{21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)},
  pages =	{7:1--7:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-213-6},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{96},
  editor =	{M\"{u}ller-Hannemann, Matthias and Perea, Federico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2021.7},
  URN =		{urn:nbn:de:0030-drops-148767},
  doi =		{10.4230/OASIcs.ATMOS.2021.7},
  annote =	{Keywords: Preprocessing Shortest Path Problems, Interval Data, Graph Algorithms}
}
Document
A Priori Search Space Pruning in the Flight Planning Problem

Authors: Adam Schienle, Pedro Maristany, and Marco Blanco

Published in: OASIcs, Volume 75, 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)


Abstract
We study the Flight Planning Problem for a single aircraft, where we look for a minimum cost path in the airway network, a directed graph. Arc evaluation, such as weather computation, is computationally expensive due to non-linear functions, but required for exactness. We propose several pruning methods to thin out the search space for Dijkstra’s algorithm before the query commences. We do so by using innate problem characteristics such as an aircraft’s tank capacity, lower and upper bounds on the total costs, and in particular, we present a method to reduce the search space even in the presence of regional crossing costs. We test all pruning methods on real-world instances, and show that incorporating crossing costs into the pruning process can reduce the number of nodes by 90% in our setting.

Cite as

Adam Schienle, Pedro Maristany, and Marco Blanco. A Priori Search Space Pruning in the Flight Planning Problem. In 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019). Open Access Series in Informatics (OASIcs), Volume 75, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{schienle_et_al:OASIcs.ATMOS.2019.8,
  author =	{Schienle, Adam and Maristany, Pedro and Blanco, Marco},
  title =	{{A Priori Search Space Pruning in the Flight Planning Problem}},
  booktitle =	{19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)},
  pages =	{8:1--8:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-128-3},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{75},
  editor =	{Cacchiani, Valentina and Marchetti-Spaccamela, Alberto},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2019.8},
  URN =		{urn:nbn:de:0030-drops-114205},
  doi =		{10.4230/OASIcs.ATMOS.2019.8},
  annote =	{Keywords: time-dependent shortest path problem, crossing costs, flight trajectory optimization, preprocessing, search space}
}
Document
A Graph- and Monoid-Based Framework for Price-Sensitive Routing in Local Public Transportation Networks

Authors: Ricardo Euler and Ralf Borndörfer

Published in: OASIcs, Volume 75, 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)


Abstract
We present a novel framework to mathematically describe the fare systems of local public transit companies. The model allows the computation of a provably cheapest itinerary even if prices depend on a number of parameters and non-linear conditions. Our approach is based on a ticket graph model to represent tickets and their relation to each other. Transitions between tickets are modeled via transition functions over partially ordered monoids and a set of symbols representing special properties of fares (e.g. surcharges). Shortest path algorithms rely on the subpath optimality property. This property is usually lost when dealing with complicated fare systems. We restore it by relaxing domination rules for tickets depending on the structure of the ticket graph. An exemplary model for the fare system of Mitteldeutsche Verkehrsbetriebe (MDV) is provided. By integrating our framework in the multi-criteria RAPTOR algorithm we provide a price-sensitive algorithm for the earliest arrival problem and assess its performance on data obtained from MDV. We discuss three preprocessing techniques that improve run times enough to make the algorithm applicable for real-time queries.

Cite as

Ricardo Euler and Ralf Borndörfer. A Graph- and Monoid-Based Framework for Price-Sensitive Routing in Local Public Transportation Networks. In 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019). Open Access Series in Informatics (OASIcs), Volume 75, pp. 12:1-12:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{euler_et_al:OASIcs.ATMOS.2019.12,
  author =	{Euler, Ricardo and Bornd\"{o}rfer, Ralf},
  title =	{{A Graph- and Monoid-Based Framework for Price-Sensitive Routing in Local Public Transportation Networks}},
  booktitle =	{19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)},
  pages =	{12:1--12:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-128-3},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{75},
  editor =	{Cacchiani, Valentina and Marchetti-Spaccamela, Alberto},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2019.12},
  URN =		{urn:nbn:de:0030-drops-114243},
  doi =		{10.4230/OASIcs.ATMOS.2019.12},
  annote =	{Keywords: shortest path, public transit, optimization, price-sensitive, raptor, fare, operations research}
}
  • Refine by Author
  • 2 Blanco, Marco
  • 2 Borndörfer, Ralf
  • 2 Maristany de las Casas, Pedro
  • 1 Euler, Ricardo
  • 1 Lindner, Niels
  • Show More...

  • Refine by Classification
  • 3 Mathematics of computing → Graph algorithms
  • 2 Mathematics of computing → Combinatorial optimization
  • 2 Mathematics of computing → Paths and connectivity problems
  • 1 Applied computing → Transportation
  • 1 Mathematics of computing → Discrete optimization
  • Show More...

  • Refine by Keyword
  • 2 flight trajectory optimization
  • 1 Graph Algorithms
  • 1 Interval Data
  • 1 Preprocessing Shortest Path Problems
  • 1 a-star algorithm
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2019
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail