3 Search Results for "Mavros, Panagiotis"


Document
Short Paper
3D Sketch Maps: Concept, Potential Benefits, and Challenges (Short Paper)

Authors: Kevin Gonyop Kim, Jakub Krukar, Panagiotis Mavros, Jiayan Zhao, Peter Kiefer, Angela Schwering, Christoph Hölscher, and Martin Raubal

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
Studying the 3D aspect of spatial information has become increasingly important due to changes in the way we interact with the surrounding environments as well as technological innovations. Current pen-and-paper approaches of sketch mapping have a limitation in investigating 3D spatial knowledge as they are forced to be drawn on 2D interfaces. In this paper, we propose the concept of 3D sketch mapping as a tool to study human spatial knowledge by externalizing the mental models of spatial information with 3D representations. The goal of this paper is to introduce the concept, discuss its potential importance and challenges, and share our vision for future research directions.

Cite as

Kevin Gonyop Kim, Jakub Krukar, Panagiotis Mavros, Jiayan Zhao, Peter Kiefer, Angela Schwering, Christoph Hölscher, and Martin Raubal. 3D Sketch Maps: Concept, Potential Benefits, and Challenges (Short Paper). In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 14:1-14:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.COSIT.2022.14,
  author =	{Kim, Kevin Gonyop and Krukar, Jakub and Mavros, Panagiotis and Zhao, Jiayan and Kiefer, Peter and Schwering, Angela and H\"{o}lscher, Christoph and Raubal, Martin},
  title =	{{3D Sketch Maps: Concept, Potential Benefits, and Challenges}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{14:1--14:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.14},
  URN =		{urn:nbn:de:0030-drops-168992},
  doi =		{10.4230/LIPIcs.COSIT.2022.14},
  annote =	{Keywords: Sketch maps, mental representations, spatial knowledge}
}
Document
Short Paper
A Computational Method for the Classification of Mental Representations of Objects in 3D Space (Short Paper)

Authors: Samuel S. Sohn, Panagiotis Mavros, Mubbasir Kapadia, and Christoph Hölscher

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
The structure mapping task is a simple method to test people’s mental representations of spatial relationships, and has recently been particularly useful in the study of volumetric spatial cognition such as the spatial memory for locations in multilevel buildings. However, there does not exist a standardised method to analyse such data and structure mapping tasks are typically analysed by human raters, based on criteria defined by the researchers. In this article, we introduce a computational method to assess spatial relationships of objects in the vertical and horizontal domains, which are realized through the structure mapping task. Here, we reanalyse participants' digitised structure maps from an earlier study (N=41) using the proposed computational methodology. Our results show that the new method successfully distinguishes between different types of structure map representations, and is sensitive to learning order effects. This method can be useful to advance the study of volumetric spatial cognition.

Cite as

Samuel S. Sohn, Panagiotis Mavros, Mubbasir Kapadia, and Christoph Hölscher. A Computational Method for the Classification of Mental Representations of Objects in 3D Space (Short Paper). In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 20:1-20:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{sohn_et_al:LIPIcs.COSIT.2022.20,
  author =	{Sohn, Samuel S. and Mavros, Panagiotis and Kapadia, Mubbasir and H\"{o}lscher, Christoph},
  title =	{{A Computational Method for the Classification of Mental Representations of Objects in 3D Space}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{20:1--20:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.20},
  URN =		{urn:nbn:de:0030-drops-169058},
  doi =		{10.4230/LIPIcs.COSIT.2022.20},
  annote =	{Keywords: mental representations of space, spatial cognition, structure mapping task, 3D space, volumetric space}
}
Document
Short Paper
Collaborative Wayfinding Under Distributed Spatial Knowledge (Short Paper)

Authors: Panagiotis Mavros, Saskia Kuliga, Ed Manley, Hilal Rohaidi Fitri, Michael Joos, and Christoph Hölscher

Published in: LIPIcs, Volume 240, 15th International Conference on Spatial Information Theory (COSIT 2022)


Abstract
In many everyday situations, two or more people navigate collaboratively but their spatial knowledge does not necessarily overlap. However, most research to date, has investigated social wayfinding under either 1-sided or fully shared spatial information. Here, we present the pilot experiment of a novel, computerised, non-verbal experimental paradigm to study collaborative wayfinding under the face of spatial information uncertainty. Participants (N=32) learned two different neighbourhoods individually, and then navigated together as dyads (D=16), from one neighbourhood to the other. Our pilot results reveal that overall participants share navigational control, but are in control more when the task leads them to a familiar destination. We discuss the effects of spatial ability and motivation to lead, as well as the outlook of the paradigm.

Cite as

Panagiotis Mavros, Saskia Kuliga, Ed Manley, Hilal Rohaidi Fitri, Michael Joos, and Christoph Hölscher. Collaborative Wayfinding Under Distributed Spatial Knowledge (Short Paper). In 15th International Conference on Spatial Information Theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 240, pp. 25:1-25:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mavros_et_al:LIPIcs.COSIT.2022.25,
  author =	{Mavros, Panagiotis and Kuliga, Saskia and Manley, Ed and Fitri, Hilal Rohaidi and Joos, Michael and H\"{o}lscher, Christoph},
  title =	{{Collaborative Wayfinding Under Distributed Spatial Knowledge}},
  booktitle =	{15th International Conference on Spatial Information Theory (COSIT 2022)},
  pages =	{25:1--25:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-257-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{240},
  editor =	{Ishikawa, Toru and Fabrikant, Sara Irina and Winter, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2022.25},
  URN =		{urn:nbn:de:0030-drops-169105},
  doi =		{10.4230/LIPIcs.COSIT.2022.25},
  annote =	{Keywords: navigation, wayfinding, collaboration, dyad, online}
}
  • Refine by Author
  • 3 Hölscher, Christoph
  • 3 Mavros, Panagiotis
  • 1 Fitri, Hilal Rohaidi
  • 1 Joos, Michael
  • 1 Kapadia, Mubbasir
  • Show More...

  • Refine by Classification
  • 2 General and reference → Experimentation
  • 1 Applied computing → Psychology
  • 1 General and reference → Empirical studies
  • 1 General and reference → Evaluation
  • 1 General and reference → Metrics
  • Show More...

  • Refine by Keyword
  • 1 3D space
  • 1 Sketch maps
  • 1 collaboration
  • 1 dyad
  • 1 mental representations
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 3 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail