1 Search Results for "Medić, Doriana"


Document
A General Approach to Derive Uncontrolled Reversible Semantics

Authors: Ivan Lanese and Doriana Medić

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
Reversible computing is a paradigm where programs can execute backward as well as in the usual forward direction. Reversible computing is attracting interest due to its applications in areas as different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent systems the main notion of reversible computing is called causal-consistent reversibility, and it allows one to undo an action if and only if its consequences, if any, have already been undone. This paper presents a general and automatic technique to define a causal-consistent reversible extension for given forward models. We support models defined using a reduction semantics in a specific format and consider a causality relation based on resources consumed and produced. The considered format is general enough to fit many formalisms studied in the literature on causal-consistent reversibility, notably Higher-Order π-calculus and Core Erlang, an intermediate language in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while we build them using the same general technique. This also allows us to show in a uniform way that a number of relevant properties, causal-consistency in particular, hold in the reversible extensions we build. Our technique also allows us to go beyond the reversible models in the literature: we cover a larger fragment of Core Erlang, including remote error handling based on links, which has never been considered in the reversibility literature.

Cite as

Ivan Lanese and Doriana Medić. A General Approach to Derive Uncontrolled Reversible Semantics. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 33:1-33:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lanese_et_al:LIPIcs.CONCUR.2020.33,
  author =	{Lanese, Ivan and Medi\'{c}, Doriana},
  title =	{{A General Approach to Derive Uncontrolled Reversible Semantics}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{33:1--33:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.33},
  URN =		{urn:nbn:de:0030-drops-128457},
  doi =		{10.4230/LIPIcs.CONCUR.2020.33},
  annote =	{Keywords: Reversible computing, causality, process calculi, Erlang}
}
  • Refine by Author
  • 1 Lanese, Ivan
  • 1 Medić, Doriana

  • Refine by Classification
  • 1 Computing methodologies → Concurrent computing methodologies
  • 1 Theory of computation → Concurrency

  • Refine by Keyword
  • 1 Erlang
  • 1 Reversible computing
  • 1 causality
  • 1 process calculi

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail