2 Search Results for "Mirosanlou, Reza"


Document
Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Authors: Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni

Published in: LIPIcs, Volume 231, 34th Euromicro Conference on Real-Time Systems (ECRTS 2022)


Abstract
In Commercial-Off-The-Shelf (COTS) systems-on-chip, processing elements communicate data through a shared memory hierarchy, and a coherent high-performance interconnect, where the de facto standard to handle shared data is through a coherence protocol. Driven by the extraordinary demands from modern real-time embedded system applications to generate, process, and communicate massive amounts of data, recent efforts aim to ensure timing predictability while integrating cache coherence in multi-core real-time systems. However, we observe that most of these efforts compromise system average performance upon offering predictability guarantees. Motivated by this observation, this work proposes an arbiter aimed at providing a predictable, coherent shared cache hierarchy solution, yet with a negligible performance degradation compared to COTS solutions. We achieve this goal by adopting a high-performance-driven architecture including a split-transaction bus and bankized shared cache. In addition, all accesses are arbitrated through a global ordering mechanism. Our proposed arbiter operates alongside conventional coherence protocols without requiring any protocol modifications. Furthermore, we leverage the Duetto reference model by pairing the proposed arbiter and a high-performance arbiter. We evaluate our solution based on both synthetic and SPLASH-3 benchmarks, showing that we can significantly outperform the state-of-the-art in predictable cache coherence, while offering a COTS-level performance.

Cite as

Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds. In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 231, pp. 16:1-16:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mirosanlou_et_al:LIPIcs.ECRTS.2022.16,
  author =	{Mirosanlou, Reza and Hassan, Mohamed and Pellizzoni, Rodolfo},
  title =	{{Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds}},
  booktitle =	{34th Euromicro Conference on Real-Time Systems (ECRTS 2022)},
  pages =	{16:1--16:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-239-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{231},
  editor =	{Maggio, Martina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2022.16},
  URN =		{urn:nbn:de:0030-drops-163330},
  doi =		{10.4230/LIPIcs.ECRTS.2022.16},
  annote =	{Keywords: Predictability, Cache, COTS, Arbitration, Real-time system}
}
Document
Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms

Authors: Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni, and Marco Caccamo

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
Multiprocessor Systems-on-Chip (MPSoC) integrating hard processing cores with programmable logic (PL) are becoming increasingly common. While these platforms have been originally designed for high performance computing applications, their rich feature set can be exploited to efficiently implement mixed criticality domains serving both critical hard real-time tasks, as well as soft real-time tasks. In this paper, we take a deep look at commercially available heterogeneous MPSoCs that incorporate PL and a multicore processor. We show how one can tailor these processors to support a mixed criticality system, where cores are strictly isolated to avoid contention on shared resources such as Last-Level Cache (LLC) and main memory. In order to avoid conflicts in last-level cache, we propose the use of cache coloring, implemented in the Jailhouse hypervisor. In addition, we employ ScratchPad Memory (SPM) inside the PL to support a multi-phase execution model for real-time tasks that avoids conflicts in shared memory. We provide a full-stack, working implementation on a latest-generation MPSoC platform, and show results based on both a set of data intensive tasks, as well as a case study based on an image processing benchmark application.

Cite as

Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni, and Marco Caccamo. Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 27:1-27:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gracioli_et_al:LIPIcs.ECRTS.2019.27,
  author =	{Gracioli, Giovani and Tabish, Rohan and Mancuso, Renato and Mirosanlou, Reza and Pellizzoni, Rodolfo and Caccamo, Marco},
  title =	{{Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{27:1--27:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.27},
  URN =		{urn:nbn:de:0030-drops-107645},
  doi =		{10.4230/LIPIcs.ECRTS.2019.27},
  annote =	{Keywords: Mixed-criticality systems, SoC Heterogeneous platforms, FPGA, real-time computing}
}
  • Refine by Author
  • 2 Mirosanlou, Reza
  • 2 Pellizzoni, Rodolfo
  • 1 Caccamo, Marco
  • 1 Gracioli, Giovani
  • 1 Hassan, Mohamed
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Embedded hardware
  • 1 Computer systems organization → Embedded systems
  • 1 Computer systems organization → Other architectures
  • 1 Computer systems organization → Real-time system architecture
  • 1 Computer systems organization → Real-time systems

  • Refine by Keyword
  • 1 Arbitration
  • 1 COTS
  • 1 Cache
  • 1 FPGA
  • 1 Mixed-criticality systems
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2019
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail