5 Search Results for "Morr, Sebastian"


Document
Media Exposition
Can You Walk This? Eulerian Tours and IDEA Instructions (Media Exposition)

Authors: Aaron T. Becker, Sándor P. Fekete, Matthias Konitzny, Sebastian Morr, and Arne Schmidt

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We illustrate and animate the classic problem of deciding whether a given graph has an Eulerian path. Starting with a collection of instances of increasing difficulty, we present a set of pictorial instructions, and show how they can be used to solve all instances. These IDEA instructions ("A series of nonverbal algorithm assembly instructions") have proven to be both entertaining for experts and enlightening for novices. We (w)rap up with a song and dance to Euler’s original instance.

Cite as

Aaron T. Becker, Sándor P. Fekete, Matthias Konitzny, Sebastian Morr, and Arne Schmidt. Can You Walk This? Eulerian Tours and IDEA Instructions (Media Exposition). In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 62:1-62:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.SoCG.2021.62,
  author =	{Becker, Aaron T. and Fekete, S\'{a}ndor P. and Konitzny, Matthias and Morr, Sebastian and Schmidt, Arne},
  title =	{{Can You Walk This? Eulerian Tours and IDEA Instructions}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{62:1--62:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.62},
  URN =		{urn:nbn:de:0030-drops-138616},
  doi =		{10.4230/LIPIcs.SoCG.2021.62},
  annote =	{Keywords: Eulerian tours, algorithms, education, IDEA instructions}
}
Document
Worst-Case Optimal Covering of Rectangles by Disks

Authors: Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any λ ≥ 1, the critical covering area A^*(λ) is the minimum value for which any set of disks with total area at least A^*(λ) can cover a rectangle of dimensions λ× 1. We show that there is a threshold value λ₂ = √{√7/2 - 1/4} ≈ 1.035797…, such that for λ < λ₂ the critical covering area A^*(λ) is A^*(λ) = 3π(λ²/16 + 5/32 + 9/(256λ²)), and for λ ≥ λ₂, the critical area is A^*(λ)=π(λ²+2)/4; these values are tight. For the special case λ=1, i.e., for covering a unit square, the critical covering area is 195π/256 ≈ 2.39301…. The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.

Cite as

Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah. Worst-Case Optimal Covering of Rectangles by Disks. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 42:1-42:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2020.42,
  author =	{Fekete, S\'{a}ndor P. and Gupta, Utkarsh and Keldenich, Phillip and Scheffer, Christian and Shah, Sahil},
  title =	{{Worst-Case Optimal Covering of Rectangles by Disks}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{42:1--42:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.42},
  URN =		{urn:nbn:de:0030-drops-122003},
  doi =		{10.4230/LIPIcs.SoCG.2020.42},
  annote =	{Keywords: Disk covering, critical density, covering coefficient, tight worst-case bound, interval arithmetic, approximation}
}
Document
Media Exposition
Covering Rectangles by Disks: The Video (Media Exposition)

Authors: Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video, we motivate and visualize a fundamental result for covering a rectangle by a set of non-uniform circles: For any λ ≥ 1, the critical covering area A^*(λ) is the minimum value for which any set of disks with total area at least A^*(λ) can cover a rectangle of dimensions λ× 1. We show that there is a threshold value λ₂ = √(√7/2 - 1/4) ≈ 1.035797…, such that for λ < λ₂ the critical covering area A^*(λ) is A^*(λ) = 3π(λ²/16 + 5/32 + 9/256λ²), and for λ ≥ λ₂, the critical area is A^*(λ) = π(λ²+2)/4; these values are tight. For the special case λ=1, i.e., for covering a unit square, the critical covering area is 195π/256 ≈ 2.39301…. We describe the structure of the proof, and show animations of some of the main components.

Cite as

Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Covering Rectangles by Disks: The Video (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 75:1-75:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2020.75,
  author =	{Fekete, S\'{a}ndor P. and Keldenich, Phillip and Scheffer, Christian},
  title =	{{Covering Rectangles by Disks: The Video}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{75:1--75:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.75},
  URN =		{urn:nbn:de:0030-drops-122337},
  doi =		{10.4230/LIPIcs.SoCG.2020.75},
  annote =	{Keywords: Disk covering, critical density, covering coefficient, tight worst-case bound, interval arithmetic, approximation}
}
Document
Packing Disks into Disks with Optimal Worst-Case Density

Authors: Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We provide a tight result for a fundamental problem arising from packing disks into a circular container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not necessarily equal) disks of total area delta <= 1/2 can always be packed into a disk of area 1; on the other hand, for any epsilon>0 there are sets of disks of area 1/2+epsilon that cannot be packed. The proof uses a careful manual analysis, complemented by a minor automatic part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms.

Cite as

Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Packing Disks into Disks with Optimal Worst-Case Density. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2019.35,
  author =	{Fekete, S\'{a}ndor P. and Keldenich, Phillip and Scheffer, Christian},
  title =	{{Packing Disks into Disks with Optimal Worst-Case Density}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.35},
  URN =		{urn:nbn:de:0030-drops-104398},
  doi =		{10.4230/LIPIcs.SoCG.2019.35},
  annote =	{Keywords: Disk packing, packing density, tight worst-case bound, interval arithmetic, approximation}
}
Document
Multimedia Exposition
Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Exposition)

Authors: Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Sebastian Morr, and Christian Scheffer

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We motivate and visualize problems and methods for packing a set of objects into a given container, in particular a set of {different-size} circles or squares into a square or circular container. Questions of this type have attracted a considerable amount of attention and are known to be notoriously hard. We focus on a particularly simple criterion for deciding whether a set can be packed: comparing the total area A of all objects to the area C of the container. The critical packing density delta^* is the largest value A/C for which any set of area A can be packed into a container of area C. We describe algorithms that establish the critical density of squares in a square (delta^*=0.5), of circles in a square (delta^*=0.5390 ...), regular octagons in a square (delta^*=0.5685 ...), and circles in a circle (delta^*=0.5).

Cite as

Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Sebastian Morr, and Christian Scheffer. Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Exposition). In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 63:1-63:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.SoCG.2019.63,
  author =	{Becker, Aaron T. and Fekete, S\'{a}ndor P. and Keldenich, Phillip and Morr, Sebastian and Scheffer, Christian},
  title =	{{Packing Geometric Objects with Optimal Worst-Case Density}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{63:1--63:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.63},
  URN =		{urn:nbn:de:0030-drops-104678},
  doi =		{10.4230/LIPIcs.SoCG.2019.63},
  annote =	{Keywords: Packing, complexity, bounds, packing density}
}
  • Refine by Author
  • 5 Fekete, Sándor P.
  • 4 Keldenich, Phillip
  • 4 Scheffer, Christian
  • 2 Becker, Aaron T.
  • 2 Morr, Sebastian
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Computational geometry
  • 4 Theory of computation → Packing and covering problems
  • 1 Applied computing → Education
  • 1 Mathematics of computing → Discrete mathematics

  • Refine by Keyword
  • 3 approximation
  • 3 interval arithmetic
  • 3 tight worst-case bound
  • 2 Disk covering
  • 2 covering coefficient
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2019
  • 2 2020
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail