2 Search Results for "Mousavi, Hamoon"


Document
Invited Talk
Using Automata and a Decision Procedure to Prove Results in Pattern Matching (Invited Talk)

Authors: Jeffrey Shallit

Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)


Abstract
The first-order theory of automatic sequences with addition is decidable, and this means that one can often prove combinatorial properties of these sequences "automatically", using the free software Walnut written by Hamoon Mousavi. In this talk I will explain how this is done, using as an example the measure of minimize size string attractor, introduced by Kempa and Prezza in 2018. Using the logic-based approach, we can also prove more general properties of string attractors for automatic sequences. This is joint work with Luke Schaeffer.

Cite as

Jeffrey Shallit. Using Automata and a Decision Procedure to Prove Results in Pattern Matching (Invited Talk). In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 2:1-2:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{shallit:LIPIcs.CPM.2022.2,
  author =	{Shallit, Jeffrey},
  title =	{{Using Automata and a Decision Procedure to Prove Results in Pattern Matching}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{2:1--2:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.2},
  URN =		{urn:nbn:de:0030-drops-161297},
  doi =		{10.4230/LIPIcs.CPM.2022.2},
  annote =	{Keywords: finite automata, decision procedure, automatic sequence, Thue-Morse sequence, Fibonacci word, string attractor}
}
Document
Track A: Algorithms, Complexity and Games
On the Complexity of Zero Gap MIP*

Authors: Hamoon Mousavi, Seyed Sajjad Nezhadi, and Henry Yuen

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
The class MIP^* is the set of languages decidable by multiprover interactive proofs with quantum entangled provers. It was recently shown by Ji, Natarajan, Vidick, Wright and Yuen that MIP^* is equal to RE, the set of recursively enumerable languages. In particular this shows that the complexity of approximating the quantum value of a non-local game G is equivalent to the complexity of the Halting problem. In this paper we investigate the complexity of deciding whether the quantum value of a non-local game G is exactly 1. This problem corresponds to a complexity class that we call zero gap MIP^*, denoted by MIP₀^*, where there is no promise gap between the verifier’s acceptance probabilities in the YES and NO cases. We prove that MIP₀^* extends beyond the first level of the arithmetical hierarchy (which includes RE and its complement coRE), and in fact is equal to Π₂⁰, the class of languages that can be decided by quantified formulas of the form ∀ y ∃ z R(x,y,z). Combined with the previously known result that MIP₀^{co} (the commuting operator variant of MIP₀^*) is equal to coRE, our result further highlights the fascinating connection between various models of quantum multiprover interactive proofs and different classes in computability theory.

Cite as

Hamoon Mousavi, Seyed Sajjad Nezhadi, and Henry Yuen. On the Complexity of Zero Gap MIP*. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 87:1-87:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{mousavi_et_al:LIPIcs.ICALP.2020.87,
  author =	{Mousavi, Hamoon and Nezhadi, Seyed Sajjad and Yuen, Henry},
  title =	{{On the Complexity of Zero Gap MIP*}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{87:1--87:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.87},
  URN =		{urn:nbn:de:0030-drops-124940},
  doi =		{10.4230/LIPIcs.ICALP.2020.87},
  annote =	{Keywords: Quantum Complexity, Multiprover Interactive Proofs, Computability Theory}
}
  • Refine by Author
  • 1 Mousavi, Hamoon
  • 1 Nezhadi, Seyed Sajjad
  • 1 Shallit, Jeffrey
  • 1 Yuen, Henry

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorics on words
  • 1 Theory of computation → Computability
  • 1 Theory of computation → Interactive proof systems
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Quantum complexity theory
  • Show More...

  • Refine by Keyword
  • 1 Computability Theory
  • 1 Fibonacci word
  • 1 Multiprover Interactive Proofs
  • 1 Quantum Complexity
  • 1 Thue-Morse sequence
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail