2 Search Results for "Nigam, Vivek"


Document
Invited Talk
Process-As-Formula Interpretation: A Substructural Multimodal View (Invited Talk)

Authors: Elaine Pimentel, Carlos Olarte, and Vivek Nigam

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
In this survey, we show how the processes-as-formulas interpretation, where computations and proof-search are strongly connected, can be used to specify different concurrent behaviors as logical theories. The proposed interpretation is parametric and modular, and it faithfully captures behaviors such as: Linear and spatial computations, epistemic state of agents, and preferences in concurrent systems. The key for this modularity is the incorporation of multimodalities in a resource aware logic, together with the ability of quantifying on such modalities. We achieve tight adequacy theorems by relying on a focusing discipline that allows for controlling the proof search process.

Cite as

Elaine Pimentel, Carlos Olarte, and Vivek Nigam. Process-As-Formula Interpretation: A Substructural Multimodal View (Invited Talk). In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 3:1-3:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{pimentel_et_al:LIPIcs.FSCD.2021.3,
  author =	{Pimentel, Elaine and Olarte, Carlos and Nigam, Vivek},
  title =	{{Process-As-Formula Interpretation: A Substructural Multimodal View}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{3:1--3:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.3},
  URN =		{urn:nbn:de:0030-drops-142414},
  doi =		{10.4230/LIPIcs.FSCD.2021.3},
  annote =	{Keywords: Linear logic, proof theory, process calculi}
}
Document
A Rewriting Framework for Activities Subject to Regulations

Authors: Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, Carolyn Talcott, and Ranko Perovic

Published in: LIPIcs, Volume 15, 23rd International Conference on Rewriting Techniques and Applications (RTA'12) (2012)


Abstract
Activities such as clinical investigations or financial processes are subject to regulations to ensure quality of results and avoid negative consequences. Regulations may be imposed by multiple governmental agencies as well as by institutional policies and protocols. Due to the complexity of both regulations and activities there is great potential for violation due to human error, misunderstanding, or even intent. Executable formal models of regulations, protocols, and activities can form the foundation for automated assistants to aid planning, monitoring, and compliance checking. We propose a model based on multiset rewriting where time is discrete and is specified by timestamps attached to facts. Actions, as well as initial, goal and critical states may be constrained by means of relative time constraints. Moreover, actions may have non-deterministic effects, that is, they may have different outcomes whenever applied. We demonstrate how specifications in our model can be straightforwardly mapped to the rewriting logic language Maude, and how one can use existing techniques to improve performance. Finally, we also determine the complexity of the plan compliance problem, that is, finding a plan that leads from an initial state to a desired goal state without reaching any undesired critical state. We consider all actions to be balanced, that is, their pre and post-conditions have the same number of facts. Under this assumption on actions, we show that the plan compliance problem is PSPACE-complete when all actions have only deterministic effects and is EXPTIME-complete when actions may have non-deterministic effects.

Cite as

Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov, Carolyn Talcott, and Ranko Perovic. A Rewriting Framework for Activities Subject to Regulations. In 23rd International Conference on Rewriting Techniques and Applications (RTA'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 15, pp. 305-322, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{kanovich_et_al:LIPIcs.RTA.2012.305,
  author =	{Kanovich, Max and Ban Kirigin, Tajana and Nigam, Vivek and Scedrov, Andre and Talcott, Carolyn and Perovic, Ranko},
  title =	{{A Rewriting Framework for Activities Subject to Regulations}},
  booktitle =	{23rd International Conference on Rewriting Techniques and Applications (RTA'12)},
  pages =	{305--322},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-38-5},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{15},
  editor =	{Tiwari, Ashish},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2012.305},
  URN =		{urn:nbn:de:0030-drops-35000},
  doi =		{10.4230/LIPIcs.RTA.2012.305},
  annote =	{Keywords: Multiset Rewrite Systems, Collaborative Systems, Applications of Rewrite Systems, Clinical Investigations, Maude}
}
  • Refine by Author
  • 2 Nigam, Vivek
  • 1 Ban Kirigin, Tajana
  • 1 Kanovich, Max
  • 1 Olarte, Carlos
  • 1 Perovic, Ranko
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Process calculi
  • 1 Theory of computation → Proof theory

  • Refine by Keyword
  • 1 Applications of Rewrite Systems
  • 1 Clinical Investigations
  • 1 Collaborative Systems
  • 1 Linear logic
  • 1 Maude
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2012
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail