3 Search Results for "Oostveen, Jelle J."


Document
The Parameterised Complexity Of Integer Multicommodity Flow

Authors: Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
The Integer Multicommodity Flow problem has been studied extensively in the literature. However, from a parameterised perspective, mostly special cases, such as the Disjoint Path problem, have been considered. Therefore, we investigate the parameterised complexity of the general Integer Multicommodity Flow problem. We show that the decision version of this problem on directed graphs for a constant number of commodities, when the capacities are given in unary, is XNLP-complete with pathwidth as parameter and XALP-complete with treewidth as parameter. When the capacities are given in binary, the problem is NP-complete even for graphs of pathwidth at most 13. We give related results for undirected graphs. These results imply that the problem is unlikely to be fixed-parameter tractable by these parameters. In contrast, we show that the problem does become fixed-parameter tractable when weighted tree partition width (a variant of tree partition width for edge weighted graphs) is used as parameter.

Cite as

Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and Erik Jan van Leeuwen. The Parameterised Complexity Of Integer Multicommodity Flow. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2023.6,
  author =	{Bodlaender, Hans L. and Mannens, Isja and Oostveen, Jelle J. and Pandey, Sukanya and van Leeuwen, Erik Jan},
  title =	{{The Parameterised Complexity Of Integer Multicommodity Flow}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.6},
  URN =		{urn:nbn:de:0030-drops-194250},
  doi =		{10.4230/LIPIcs.IPEC.2023.6},
  annote =	{Keywords: multicommodity flow, parameterised complexity, XNLP-completeness, XALP-completeness}
}
Document
Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs

Authors: Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
For any finite set ℋ = {H_1,…,H_p} of graphs, a graph is ℋ-subgraph-free if it does not contain any of H_1,…,H_p as a subgraph. In recent work, meta-classifications have been studied: these show that if graph problems satisfy certain prescribed conditions, their complexity can be classified on classes of ℋ-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time solutions on classes that have bounded treewidth or maximum degree at most 3 and examine their complexity on H-subgraph-free graph classes where H is a connected graph. With this approach, we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems. We highlight that, to establish that Independent Feedback Vertex Set belongs to this collection of problems, we first show that it can be solved in polynomial time on graphs of maximum degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each graph in this class has a minimum size feedback vertex set that is also an independent set.

Cite as

Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{johnson_et_al:LIPIcs.MFCS.2023.57,
  author =	{Johnson, Matthew and Martin, Barnaby and Pandey, Sukanya and Paulusma, Dani\"{e}l and Smith, Siani and van Leeuwen, Erik Jan},
  title =	{{Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{57:1--57:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.57},
  URN =		{urn:nbn:de:0030-drops-185914},
  doi =		{10.4230/LIPIcs.MFCS.2023.57},
  annote =	{Keywords: forbidden subgraphs, independent feedback vertex set, treewidth}
}
Document
Parameterized Complexity of Streaming Diameter and Connectivity Problems

Authors: Jelle J. Oostveen and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
We initiate the investigation of the parameterized complexity of Diameter and Connectivity in the streaming paradigm. On the positive end, we show that knowing a vertex cover of size k allows for algorithms in the Adjacency List (AL) streaming model whose number of passes is constant and memory is 𝒪(log n) for any fixed k. Underlying these algorithms is a method to execute a breadth-first search in 𝒪(k) passes and 𝒪(k log n) bits of memory. On the negative end, we show that many other parameters lead to lower bounds in the AL model, where Ω(n/p) bits of memory is needed for any p-pass algorithm even for constant parameter values. In particular, this holds for graphs with a known modulator (deletion set) of constant size to a graph that has no induced subgraph isomorphic to a fixed graph H, for most H. For some cases, we can also show one-pass, Ω(n log n) bits of memory lower bounds. We also prove a much stronger Ω(n²/p) lower bound for Diameter on bipartite graphs. Finally, using the insights we developed into streaming parameterized graph exploration algorithms, we show a new streaming kernelization algorithm for computing a vertex cover of size k. This yields a kernel of 2k vertices (with 𝒪(k²) edges) produced as a stream in poly(k) passes and only 𝒪(k log n) bits of memory.

Cite as

Jelle J. Oostveen and Erik Jan van Leeuwen. Parameterized Complexity of Streaming Diameter and Connectivity Problems. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{oostveen_et_al:LIPIcs.IPEC.2022.24,
  author =	{Oostveen, Jelle J. and van Leeuwen, Erik Jan},
  title =	{{Parameterized Complexity of Streaming Diameter and Connectivity Problems}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.24},
  URN =		{urn:nbn:de:0030-drops-173808},
  doi =		{10.4230/LIPIcs.IPEC.2022.24},
  annote =	{Keywords: Stream, Streaming, Graphs, Parameter, Complexity, Diameter, Connectivity, Vertex Cover, Disjointness, Permutation}
}
  • Refine by Author
  • 3 van Leeuwen, Erik Jan
  • 2 Oostveen, Jelle J.
  • 2 Pandey, Sukanya
  • 1 Bodlaender, Hans L.
  • 1 Johnson, Matthew
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Graph theory
  • 2 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Theory of computation → Lower bounds and information complexity
  • 1 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 1 Complexity
  • 1 Connectivity
  • 1 Diameter
  • 1 Disjointness
  • 1 Graphs
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2023
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail