6 Search Results for "Pédrot, Pierre-Marie"


Volume

LIPIcs, Volume 269

28th International Conference on Types for Proofs and Programs (TYPES 2022)

TYPES 2022, June 20-25, 2022, LS2N, University of Nantes, France

Editors: Delia Kesner and Pierre-Marie Pédrot

Document
The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

Authors: Yannick Forster, Dominik Kirst, and Niklas Mück

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
The Kleene-Post theorem and Post’s theorem are two central and historically important results in the development of oracle computability theory, clarifying the structure of Turing reducibility degrees. They state, respectively, that there are incomparable Turing degrees and that the arithmetical hierarchy is connected to the relativised form of the halting problem defined via Turing jumps. We study these two results in the calculus of inductive constructions (CIC), the constructive type theory underlying the Coq proof assistant. CIC constitutes an ideal foundation for the formalisation of computability theory for two reasons: First, like in other constructive foundations, computable functions can be treated via axioms as a purely synthetic notion rather than being defined in terms of a concrete analytic model of computation such as Turing machines. Furthermore and uniquely, CIC allows consistently assuming classical logic via the law of excluded middle or weaker variants on top of axioms for synthetic computability, enabling both fully classical developments and taking the perspective of constructive reverse mathematics on computability theory. In the present paper, we give a fully constructive construction of two Turing-incomparable degrees à la Kleene-Post and observe that the classical content of Post’s theorem seems to be related to the arithmetical hierarchy of the law of excluded middle due to Akama et. al. Technically, we base our investigation on a previously studied notion of synthetic oracle computability and contribute the first consistency proof of a suitable enumeration axiom. All results discussed in the paper are mechanised and contributed to the Coq library of synthetic computability.

Cite as

Yannick Forster, Dominik Kirst, and Niklas Mück. The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.CSL.2024.29,
  author =	{Forster, Yannick and Kirst, Dominik and M\"{u}ck, Niklas},
  title =	{{The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.29},
  URN =		{urn:nbn:de:0030-drops-196728},
  doi =		{10.4230/LIPIcs.CSL.2024.29},
  annote =	{Keywords: Constructive mathematics, Computability theory, Logical foundations, Constructive type theory, Interactive theorem proving, Coq proof assistant}
}
Document
Complete Volume
LIPIcs, Volume 269, TYPES 2022, Complete Volume

Authors: Delia Kesner and Pierre-Marie Pédrot

Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)


Abstract
LIPIcs, Volume 269, TYPES 2022, Complete Volume

Cite as

28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 1-342, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{kesner_et_al:LIPIcs.TYPES.2022,
  title =	{{LIPIcs, Volume 269, TYPES 2022, Complete Volume}},
  booktitle =	{28th International Conference on Types for Proofs and Programs (TYPES 2022)},
  pages =	{1--342},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-285-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{269},
  editor =	{Kesner, Delia and P\'{e}drot, Pierre-Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022},
  URN =		{urn:nbn:de:0030-drops-184425},
  doi =		{10.4230/LIPIcs.TYPES.2022},
  annote =	{Keywords: LIPIcs, Volume 269, TYPES 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Delia Kesner and Pierre-Marie Pédrot

Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 0:i-0:viii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.TYPES.2022.0,
  author =	{Kesner, Delia and P\'{e}drot, Pierre-Marie},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{28th International Conference on Types for Proofs and Programs (TYPES 2022)},
  pages =	{0:i--0:viii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-285-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{269},
  editor =	{Kesner, Delia and P\'{e}drot, Pierre-Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.0},
  URN =		{urn:nbn:de:0030-drops-184433},
  doi =		{10.4230/LIPIcs.TYPES.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Gardening with the Pythia A Model of Continuity in a Dependent Setting

Authors: Martin Baillon, Assia Mahboubi, and Pierre-Marie Pédrot

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
We generalize to a rich dependent type theory a proof originally developed by Escardó that all System 𝚃 functionals are continuous. It relies on the definition of a syntactic model of Baclofen Type Theory, a type theory where dependent elimination must be strict, into the Calculus of Inductive Constructions. The model is given by three translations: the axiom translation, that adds an oracle to the context; the branching translation, based on the dialogue monad, turning every type into a tree; and finally, a layer of algebraic binary parametricity, binding together the two translations. In the resulting type theory, every function f : (ℕ → ℕ) → ℕ is externally continuous.

Cite as

Martin Baillon, Assia Mahboubi, and Pierre-Marie Pédrot. Gardening with the Pythia A Model of Continuity in a Dependent Setting. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 5:1-5:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{baillon_et_al:LIPIcs.CSL.2022.5,
  author =	{Baillon, Martin and Mahboubi, Assia and P\'{e}drot, Pierre-Marie},
  title =	{{Gardening with the Pythia A Model of Continuity in a Dependent Setting}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.5},
  URN =		{urn:nbn:de:0030-drops-157256},
  doi =		{10.4230/LIPIcs.CSL.2022.5},
  annote =	{Keywords: Type theory, continuity, syntactic model}
}
Document
Ornaments for Proof Reuse in Coq

Authors: Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Ornaments express relations between inductive types with the same inductive structure. We implement fully automatic proof reuse for a particular class of ornaments in a Coq plugin, and show how such a tool can give programmers the rewards of using indexed inductive types while automating away many of the costs. The plugin works directly on Coq code; it is the first ornamentation tool for a non-embedded dependently typed language. It is also the first tool to automatically identify ornaments: To lift a function or proof, the user must provide only the source type, the destination type, and the source function or proof. In taking advantage of the mathematical properties of ornaments, our approach produces faster functions and smaller terms than a more general approach to proof reuse in Coq.

Cite as

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for Proof Reuse in Coq. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ringer_et_al:LIPIcs.ITP.2019.26,
  author =	{Ringer, Talia and Yazdani, Nathaniel and Leo, John and Grossman, Dan},
  title =	{{Ornaments for Proof Reuse in Coq}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.26},
  URN =		{urn:nbn:de:0030-drops-110816},
  doi =		{10.4230/LIPIcs.ITP.2019.26},
  annote =	{Keywords: ornaments, proof reuse, proof automation}
}
  • Refine by Author
  • 3 Pédrot, Pierre-Marie
  • 2 Kesner, Delia
  • 1 Baillon, Martin
  • 1 Forster, Yannick
  • 1 Grossman, Dan
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Type theory
  • 3 Software and its engineering → Formal software verification
  • 3 Theory of computation → Constructive mathematics
  • 2 Computing methodologies → Representation of mathematical objects
  • 2 Security and privacy → Systems security
  • Show More...

  • Refine by Keyword
  • 1 Computability theory
  • 1 Conference Organization
  • 1 Constructive mathematics
  • 1 Constructive type theory
  • 1 Coq proof assistant
  • Show More...

  • Refine by Type
  • 5 document
  • 1 volume

  • Refine by Publication Year
  • 3 2023
  • 1 2019
  • 1 2022
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail