5 Search Results for "Paul, Alice"


Document
Linear Transformations Between Dominating Sets in the TAR-Model

Authors: Nicolas Bousquet, Alice Joffard, and Paul Ouvrard

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
Given a graph G and an integer k, a token addition and removal (TAR for short) reconfiguration sequence between two dominating sets D_s and D_t of size at most k is a sequence S = ⟨ D₀ = D_s, D₁ …, D_𝓁 = D_t ⟩ of dominating sets of G such that any two consecutive dominating sets differ by the addition or deletion of one vertex, and no dominating set has size bigger than k. We first improve a result of Haas and Seyffarth [R. Haas and K. Seyffarth, 2017], by showing that if k = Γ(G)+α(G)-1 (where Γ(G) is the maximum size of a minimal dominating set and α(G) the maximum size of an independent set), then there exists a linear TAR reconfiguration sequence between any pair of dominating sets. We then improve these results on several graph classes by showing that the same holds for K_𝓁-minor free graph as long as k ≥ Γ(G)+O(𝓁 √(log 𝓁)) and for planar graphs whenever k ≥ Γ(G)+3. Finally, we show that if k = Γ(G)+tw(G)+1, then there also exists a linear transformation between any pair of dominating sets.

Cite as

Nicolas Bousquet, Alice Joffard, and Paul Ouvrard. Linear Transformations Between Dominating Sets in the TAR-Model. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 37:1-37:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.ISAAC.2020.37,
  author =	{Bousquet, Nicolas and Joffard, Alice and Ouvrard, Paul},
  title =	{{Linear Transformations Between Dominating Sets in the TAR-Model}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{37:1--37:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.37},
  URN =		{urn:nbn:de:0030-drops-133812},
  doi =		{10.4230/LIPIcs.ISAAC.2020.37},
  annote =	{Keywords: reconfiguration, dominating sets, addition removal, connectivity, diameter, minor, treewidth}
}
Document
Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

Authors: Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson '01] and highly unbalanced, dense graphs as in [Raz '04] and [Razborov '03, '04]. We obtain our results by revisiting Razborov’s pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.

Cite as

Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov. Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2020.28,
  author =	{de Rezende, Susanna F. and Nordstr\"{o}m, Jakob and Risse, Kilian and Sokolov, Dmitry},
  title =	{{Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.28},
  URN =		{urn:nbn:de:0030-drops-125804},
  doi =		{10.4230/LIPIcs.CCC.2020.28},
  annote =	{Keywords: proof complexity, resolution, weak pigeonhole principle, perfect matching, sparse graphs}
}
Document
Lifting Theorems for Equality

Authors: Bruno Loff and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We show a deterministic simulation (or lifting) theorem for composed problems f o Eq_n where the inner function (the gadget) is Equality on n bits. When f is a total function on p bits, it is easy to show via a rank argument that the communication complexity of f o Eq_n is Omega(deg(f) * n). However, there is a surprising counter-example of a partial function f on p bits, such that any completion f' of f has deg(f') = Omega(p), and yet f o Eq_n has communication complexity O(n). Nonetheless, we are able to show that the communication complexity of f o Eq_n is at least D(f) * n for a complexity measure D(f) which is closely related to the AND-query complexity of f and is lower-bounded by the logarithm of the leaf complexity of f. As a corollary, we also obtain lifting theorems for the set-disjointness gadget, and a lifting theorem in the context of parity decision-trees, for the NOR gadget. As an application, we prove a tight lower-bound for the deterministic communication complexity of the communication problem, where Alice and Bob are each given p-many n-bit strings, with the promise that either all of the strings are distinct, or all-but-one of the strings are distinct, and they wish to know which is the case. We show that the complexity of this problem is Theta(p * n).

Cite as

Bruno Loff and Sagnik Mukhopadhyay. Lifting Theorems for Equality. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 50:1-50:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.STACS.2019.50,
  author =	{Loff, Bruno and Mukhopadhyay, Sagnik},
  title =	{{Lifting Theorems for Equality}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{50:1--50:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.50},
  URN =		{urn:nbn:de:0030-drops-102892},
  doi =		{10.4230/LIPIcs.STACS.2019.50},
  annote =	{Keywords: Communication complexity, Query complexity, Simulation theorem, Equality function}
}
Document
One-Sided Error Communication Complexity of Gap Hamming Distance

Authors: Egor Klenin and Alexander Kozachinskiy

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
Assume that Alice has a binary string x and Bob a binary string y, both strings are of length n. Their goal is to output 0, if x and y are at least L-close in Hamming distance, and output 1, if x and y are at least U-far in Hamming distance, where L < U are some integer parameters known to both parties. If the Hamming distance between x and y lies in the interval (L, U), they are allowed to output anything. This problem is called the Gap Hamming Distance. In this paper we study public-coin one-sided error communication complexity of this problem. The error with probability at most 1/2 is allowed only for pairs at Hamming distance at least U. In this paper we determine this complexity up to factors logarithmic in L. The protocol we construct for the upper bound is simultaneous.

Cite as

Egor Klenin and Alexander Kozachinskiy. One-Sided Error Communication Complexity of Gap Hamming Distance. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{klenin_et_al:LIPIcs.MFCS.2018.7,
  author =	{Klenin, Egor and Kozachinskiy, Alexander},
  title =	{{One-Sided Error Communication Complexity of Gap Hamming Distance}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.7},
  URN =		{urn:nbn:de:0030-drops-95893},
  doi =		{10.4230/LIPIcs.MFCS.2018.7},
  annote =	{Keywords: Communication Complexity, Gap Hamming Distance, one-sided error}
}
Document
Prize-Collecting TSP with a Budget Constraint

Authors: Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, and David P. Williamson

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
We consider constrained versions of the prize-collecting traveling salesman and the minimum spanning tree problems. The goal is to maximize the number of vertices in the returned tour/tree subject to a bound on the tour/tree cost. We present a 2-approximation algorithm for these problems based on a primal-dual approach. The algorithm relies on finding a threshold value for the dual variable corresponding to the budget constraint in the primal and then carefully constructing a tour/tree that is just within budget. Thereby, we improve the best-known guarantees from 3+epsilon and 2+epsilon for the tree and the tour version, respectively. Our analysis extends to the setting with weighted vertices, in which we want to maximize the total weight of vertices in the tour/tree subject to the same budget constraint.

Cite as

Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, and David P. Williamson. Prize-Collecting TSP with a Budget Constraint. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 62:1-62:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{paul_et_al:LIPIcs.ESA.2017.62,
  author =	{Paul, Alice and Freund, Daniel and Ferber, Aaron and Shmoys, David B. and Williamson, David P.},
  title =	{{Prize-Collecting TSP with a Budget Constraint}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{62:1--62:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.62},
  URN =		{urn:nbn:de:0030-drops-78375},
  doi =		{10.4230/LIPIcs.ESA.2017.62},
  annote =	{Keywords: approximation algorithms, traveling salesman problem}
}
  • Refine by Author
  • 1 Bousquet, Nicolas
  • 1 Ferber, Aaron
  • 1 Freund, Daniel
  • 1 Joffard, Alice
  • 1 Klenin, Egor
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Communication complexity
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Oracles and decision trees
  • 1 Theory of computation → Proof complexity

  • Refine by Keyword
  • 1 Communication Complexity
  • 1 Communication complexity
  • 1 Equality function
  • 1 Gap Hamming Distance
  • 1 Query complexity
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2020
  • 1 2017
  • 1 2018
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail