5 Search Results for "Peis, Britta"


Document
Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 22192)

Authors: Martin Gairing, Carolina Osorio, Britta Peis, David Watling, and Katharina Eickhoff

Published in: Dagstuhl Reports, Volume 12, Issue 5 (2022)


Abstract
Traffic assignment models are crucial for transport planners to be able to predict the congestion, environmental and social impacts of transport policies, for example in the light of possible changes to the infrastructure, to the transport services offered, or to the prices charged to travellers. The motivation for this series of seminars - of which this seminar was the third - is the prevalence in the transportation community of basing such predictions on complex computer-based simulations that are capable of resolving many elements of a real systems, while on the other hand, the theory of dynamic traffic assignments (in terms of equilibrium existence, computability and efficiency) had not matured to the point matching the model complexity inherent in simulations. Progress has been made on this issue in the first two seminars (Dagstuhl Seminar 15412 and 18102), by bringing together leading scientists in the areas of traffic simulation, algorithmic game theory and dynamic traffic assignment. We continued this process this seminar. Moreover, we started to address the growing real-life challenge of new kinds of 'mobility service' emerging, before the tools are available to incorporate them in such planning models. These services include intelligent/dynamic ride-sharing and car-sharing, through to fully autonomous vehicles, provided potentially by a variety of competing operators.

Cite as

Martin Gairing, Carolina Osorio, Britta Peis, David Watling, and Katharina Eickhoff. Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 22192). In Dagstuhl Reports, Volume 12, Issue 5, pp. 92-111, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{gairing_et_al:DagRep.12.5.92,
  author =	{Gairing, Martin and Osorio, Carolina and Peis, Britta and Watling, David and Eickhoff, Katharina},
  title =	{{Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 22192)}},
  pages =	{92--111},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{5},
  editor =	{Gairing, Martin and Osorio, Carolina and Peis, Britta and Watling, David and Eickhoff, Katharina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.12.5.92},
  URN =		{urn:nbn:de:0030-drops-174441},
  doi =		{10.4230/DagRep.12.5.92},
  annote =	{Keywords: Algorithms and Complexity of traffic equilibrium computations, Dynamic traffic assignment models, Simulation and network optimization}
}
Document
Oligopolistic Competitive Packet Routing

Authors: Britta Peis, Bjoern Tauer, Veerle Timmermans, and Laura Vargas Koch

Published in: OASIcs, Volume 65, 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018)


Abstract
Oligopolistic competitive packet routing games model situations in which traffic is routed in discrete units through a network over time. We study a game-theoretic variant of packet routing, where in contrast to classical packet routing, we are lacking a central authority to decide on an oblivious routing protocol. Instead, selfish acting decision makers ("players") control a certain amount of traffic each, which needs to be sent as fast as possible from a player-specific origin to a player-specific destination through a commonly used network. The network is represented by a directed graph, each edge of which being endowed with a transit time, as well as a capacity bounding the number of traffic units entering an edge simultaneously. Additionally, a priority policy on the set of players is publicly known with respect to which conflicts at intersections are resolved. We prove the existence of a pure Nash equilibrium and show that it can be constructed by sequentially computing an integral earliest arrival flow for each player. Moreover, we derive several tight bounds on the price of anarchy and the price of stability in single source games.

Cite as

Britta Peis, Bjoern Tauer, Veerle Timmermans, and Laura Vargas Koch. Oligopolistic Competitive Packet Routing. In 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018). Open Access Series in Informatics (OASIcs), Volume 65, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{peis_et_al:OASIcs.ATMOS.2018.13,
  author =	{Peis, Britta and Tauer, Bjoern and Timmermans, Veerle and Vargas Koch, Laura},
  title =	{{Oligopolistic Competitive Packet Routing}},
  booktitle =	{18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018)},
  pages =	{13:1--13:22},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-096-5},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{65},
  editor =	{Bornd\"{o}rfer, Ralf and Storandt, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2018.13},
  URN =		{urn:nbn:de:0030-drops-97186},
  doi =		{10.4230/OASIcs.ATMOS.2018.13},
  annote =	{Keywords: Competitive Packet Routing, Nash Equilibrium, Oligopoly, Efficiency of Equilibria, Priority Policy}
}
Document
Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 18102)

Authors: Roberto Cominetti, Tobias Harks, Carolina Osorio, and Britta Peis

Published in: Dagstuhl Reports, Volume 8, Issue 3 (2018)


Abstract
Traffic assignment models are crucial for traffic planners to be able to predict traffic distributions, especially, in light of possible changes of the infrastructure, e.g., road constructions, traffic light controls, etc. The starting point of the seminar was the observation that there is a trend in the transportation community (science as well as industry) to base such predictions on complex computer-based simulations that are capable of resolving many elements of a real transportation system. On the other hand, within the past few years, the theory of dynamic traffic assignments in terms of equilibrium existence and equilibrium computation has not matured to the point matching the model complexity inherent in simulations. In view of the above, this interdisciplinary seminar brought together leading scientists in the areas traffic simulations, algorithmic game theory and dynamic traffic assignment as well as people from industry with strong scientific background who identified possible ways to bridge the described gap.

Cite as

Roberto Cominetti, Tobias Harks, Carolina Osorio, and Britta Peis. Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 18102). In Dagstuhl Reports, Volume 8, Issue 3, pp. 21-38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{cominetti_et_al:DagRep.8.3.21,
  author =	{Cominetti, Roberto and Harks, Tobias and Osorio, Carolina and Peis, Britta},
  title =	{{Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 18102)}},
  pages =	{21--38},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2018},
  volume =	{8},
  number =	{3},
  editor =	{Cominetti, Roberto and Harks, Tobias and Osorio, Carolina and Peis, Britta},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.8.3.21},
  URN =		{urn:nbn:de:0030-drops-92954},
  doi =		{10.4230/DagRep.8.3.21},
  annote =	{Keywords: Algorithm and complexity of traffic equilibrium computation, dynamic traffic assignment models, Simulation and network optimization}
}
Document
Competitive Packet Routing with Priority Lists

Authors: Tobias Harks, Britta Peis, Daniel Schmand, and Laura Vargas Koch

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
In competitive packet routing games, packets are routed selfishly through a network and scheduling policies at edges determine which packages are forwarded first if there is not enough capacity on an edge to forward all packages at once. We analyze the impact of priority lists on the worst-case quality of pure Nash equilibria. A priority list is an ordered list of players that may or may not depend on the edge. Whenever the number of packets entering an edge exceeds the inflow capacity, packets are processed in list order. We derive several new bounds on the price of anarchy and stability for global and local priority policies. We also consider the question of the complexity of computing an optimal priority list. It turns out that even for very restricted cases, i.e., for routing on a tree, the computation of an optimal priority list is APX-hard.

Cite as

Tobias Harks, Britta Peis, Daniel Schmand, and Laura Vargas Koch. Competitive Packet Routing with Priority Lists. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{harks_et_al:LIPIcs.MFCS.2016.49,
  author =	{Harks, Tobias and Peis, Britta and Schmand, Daniel and Vargas Koch, Laura},
  title =	{{Competitive Packet Routing with Priority Lists}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.49},
  URN =		{urn:nbn:de:0030-drops-64622},
  doi =		{10.4230/LIPIcs.MFCS.2016.49},
  annote =	{Keywords: packet routing, Nash equilibrium, price of anarchy, priority policy, complexity}
}
Document
Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 15412)

Authors: José R. Correa, Tobias Harks, Kai Nagel, Britta Peis, and Martin Skutella

Published in: Dagstuhl Reports, Volume 5, Issue 10 (2016)


Abstract
Traffic assignment models are crucial for traffic planners to be able to predict traffic distributions, especially, in light of possible changes of the infrastructure, e.g., road constructions, traffic light controls, etc. The starting point of the seminar was the observation that there is a trend in the transportation community (science as well as industry) to base such predictions on complex computer-based simulations that are capable of resolving many elements of a real transportation system. On the other hand, within the past few years, the theory of dynamic traffic assignments in terms of equilibrium existence and equilibrium computation has not matured to the point matching the model complexity inherent in simulations. In view of the above, this interdisciplinary seminar brought together leading scientists in the areas traffic simulations, algorithmic game theory and dynamic traffic assignment as well as people from industry with strong scientific background who identified possible ways to bridge the described gap.

Cite as

José R. Correa, Tobias Harks, Kai Nagel, Britta Peis, and Martin Skutella. Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 15412). In Dagstuhl Reports, Volume 5, Issue 10, pp. 19-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{correa_et_al:DagRep.5.10.19,
  author =	{Correa, Jos\'{e} R. and Harks, Tobias and Nagel, Kai and Peis, Britta and Skutella, Martin},
  title =	{{Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 15412)}},
  pages =	{19--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2016},
  volume =	{5},
  number =	{10},
  editor =	{Correa, Jos\'{e} R. and Harks, Tobias and Nagel, Kai and Peis, Britta and Skutella, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.5.10.19},
  URN =		{urn:nbn:de:0030-drops-56938},
  doi =		{10.4230/DagRep.5.10.19},
  annote =	{Keywords: Dynamic traffic equilibria, Complexity of equilibrium computation, Simulation, Dynamic network flow theory, Network optimization}
}
  • Refine by Author
  • 5 Peis, Britta
  • 3 Harks, Tobias
  • 2 Osorio, Carolina
  • 2 Vargas Koch, Laura
  • 1 Cominetti, Roberto
  • Show More...

  • Refine by Classification
  • 1 Networks → Control path algorithms
  • 1 Networks → Network algorithms
  • 1 Networks → Network performance evaluation
  • 1 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 2 Simulation and network optimization
  • 1 Algorithm and complexity of traffic equilibrium computation
  • 1 Algorithms and Complexity of traffic equilibrium computations
  • 1 Competitive Packet Routing
  • 1 Complexity of equilibrium computation
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2016
  • 2 2018
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail