5 Search Results for "Peitl, Tomáš"


Document
Proving Unsatisfiability with Hitting Formulas

Authors: Yuval Filmus, Edward A. Hirsch, Artur Riazanov, Alexander Smal, and Marc Vinyals

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be simultaneously falsified. Hitting formulas have been studied in many different contexts at least since [Iwama, 1989] and, based on experimental evidence, Peitl and Szeider [Tomás Peitl and Stefan Szeider, 2022] conjectured that unsatisfiable hitting formulas are among the hardest for resolution. Using the fact that hitting formulas are easy to check for satisfiability we make them the foundation of a new static proof system {{rmHitting}}: a refutation of a CNF in {{rmHitting}} is an unsatisfiable hitting formula such that each of its clauses is a weakening of a clause of the refuted CNF. Comparing this system to resolution and other proof systems is equivalent to studying the hardness of hitting formulas. Our first result is that {{rmHitting}} is quasi-polynomially simulated by tree-like resolution, which means that hitting formulas cannot be exponentially hard for resolution and partially refutes the conjecture of Peitl and Szeider. We show that tree-like resolution and {{rmHitting}} are quasi-polynomially separated, while for resolution, this question remains open. For a system that is only quasi-polynomially stronger than tree-like resolution, {{rmHitting}} is surprisingly difficult to polynomially simulate in another proof system. Using the ideas of Raz-Shpilka’s polynomial identity testing for noncommutative circuits [Raz and Shpilka, 2005] we show that {{rmHitting}} is p-simulated by {{rmExtended {{rmFrege}}}}, but we conjecture that much more efficient simulations exist. As a byproduct, we show that a number of static (semi)algebraic systems are verifiable in deterministic polynomial time. We consider multiple extensions of {{rmHitting}}, and in particular a proof system {{{rmHitting}}(⊕)} related to the {{{rmRes}}(⊕)} proof system for which no superpolynomial-size lower bounds are known. {{{rmHitting}}(⊕)} p-simulates the tree-like version of {{{rmRes}}(⊕)} and is at least quasi-polynomially stronger. We show that formulas expressing the non-existence of perfect matchings in the graphs K_{n,n+2} are exponentially hard for {{{rmHitting}}(⊕)} via a reduction to the partition bound for communication complexity. See the full version of the paper for the proofs. They are omitted in this Extended Abstract.

Cite as

Yuval Filmus, Edward A. Hirsch, Artur Riazanov, Alexander Smal, and Marc Vinyals. Proving Unsatisfiability with Hitting Formulas. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 48:1-48:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{filmus_et_al:LIPIcs.ITCS.2024.48,
  author =	{Filmus, Yuval and Hirsch, Edward A. and Riazanov, Artur and Smal, Alexander and Vinyals, Marc},
  title =	{{Proving Unsatisfiability with Hitting Formulas}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{48:1--48:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.48},
  URN =		{urn:nbn:de:0030-drops-195762},
  doi =		{10.4230/LIPIcs.ITCS.2024.48},
  annote =	{Keywords: hitting formulas, polynomial identity testing, query complexity}
}
Document
A SAT Solver’s Opinion on the Erdős-Faber-Lovász Conjecture

Authors: Markus Kirchweger, Tomáš Peitl, and Stefan Szeider

Published in: LIPIcs, Volume 271, 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)


Abstract
In 1972, Paul Erdős, Vance Faber, and Lászlo Lovász asked whether every linear hypergraph with n vertices can be edge-colored with n colors, a statement that has come to be known as the EFL conjecture. Erdős himself considered the conjecture as one of his three favorite open problems, and offered increasing money prizes for its solution on several occasions. A proof of the conjecture was recently announced, for all but a finite number of hypergraphs. In this paper we look at some of the cases not covered by this proof. We use SAT solvers, and in particular the SAT Modulo Symmetries (SMS) framework, to generate non-colorable linear hypergraphs with a fixed number of vertices and hyperedges modulo isomorphisms. Since hypergraph colorability is NP-hard, we cannot directly express in a propositional formula that we want only non-colorable hypergraphs. Instead, we use one SAT (SMS) solver to generate candidate hypergraphs modulo isomorphisms, and another to reject them by finding a coloring. Each successive candidate is required to defeat all previous colorings, whereby we avoid having to generate and test all linear hypergraphs. Computational methods have previously been used to verify the EFL conjecture for small hypergraphs. We verify and extend these results to larger values and discuss challenges and directions. Ours is the first computational approach to the EFL conjecture that allows producing independently verifiable, DRAT proofs.

Cite as

Markus Kirchweger, Tomáš Peitl, and Stefan Szeider. A SAT Solver’s Opinion on the Erdős-Faber-Lovász Conjecture. In 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 271, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kirchweger_et_al:LIPIcs.SAT.2023.13,
  author =	{Kirchweger, Markus and Peitl, Tom\'{a}\v{s} and Szeider, Stefan},
  title =	{{A SAT Solver’s Opinion on the Erd\H{o}s-Faber-Lov\'{a}sz Conjecture}},
  booktitle =	{26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-286-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{271},
  editor =	{Mahajan, Meena and Slivovsky, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.13},
  URN =		{urn:nbn:de:0030-drops-184752},
  doi =		{10.4230/LIPIcs.SAT.2023.13},
  annote =	{Keywords: hypergraphs, graph coloring, SAT modulo symmetries}
}
Document
Should Decisions in QCDCL Follow Prefix Order?

Authors: Benjamin Böhm, Tomáš Peitl, and Olaf Beyersdorff

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
Quantified conflict-driven clause learning (QCDCL) is one of the main solving approaches for quantified Boolean formulas (QBF). One of the differences between QCDCL and propositional CDCL is that QCDCL typically follows the prefix order of the QBF for making decisions. We investigate an alternative model for QCDCL solving where decisions can be made in arbitrary order. The resulting system QCDCL^ANY is still sound and terminating, but does not necessarily allow to always learn asserting clauses or cubes. To address this potential drawback, we additionally introduce two subsystems that guarantee to always learn asserting clauses (QCDCL^UNI-ANI) and asserting cubes (QCDCL^EXI-ANY), respectively. We model all four approaches by formal proof systems and show that QCDCL^UNI-ANY is exponentially better than QCDCL on false formulas, whereas QCDCL^EXI-ANY is exponentially better than QCDCL on true QBFs. Technically, this involves constructing specific QBF families and showing lower and upper bounds in the respective proof systems. We complement our theoretical study with some initial experiments that confirm our theoretical findings.

Cite as

Benjamin Böhm, Tomáš Peitl, and Olaf Beyersdorff. Should Decisions in QCDCL Follow Prefix Order?. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bohm_et_al:LIPIcs.SAT.2022.11,
  author =	{B\"{o}hm, Benjamin and Peitl, Tom\'{a}\v{s} and Beyersdorff, Olaf},
  title =	{{Should Decisions in QCDCL Follow Prefix Order?}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.11},
  URN =		{urn:nbn:de:0030-drops-166850},
  doi =		{10.4230/LIPIcs.SAT.2022.11},
  annote =	{Keywords: QBF, CDCL, proof complexity, lower bounds}
}
Document
QBF Merge Resolution Is Powerful but Unnatural

Authors: Meena Mahajan and Gaurav Sood

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
The Merge Resolution proof system (M-Res) for QBFs, proposed by Beyersdorff et al. in 2019, explicitly builds partial strategies inside refutations. The original motivation for this approach was to overcome the limitations encountered in long-distance Q-Resolution proof system (LD-Q-Res), where the syntactic side-conditions, while prohibiting all unsound resolutions, also end up prohibiting some sound resolutions. However, while the advantage of M-Res over many other resolution-based QBF proof systems was already demonstrated, a comparison with LD-Q-Res itself had remained open. In this paper, we settle this question. We show that M-Res has an exponential advantage over not only LD-Q-Res, but even over LQU^+-Res and IRM, the most powerful among currently known resolution-based QBF proof systems. Combining this with results from Beyersdorff et al. 2020, we conclude that M-Res is incomparable with LQU-Res and LQU^+-Res. Our proof method reveals two additional and curious features about MRes: (i) M-Res is not closed under restrictions, and is hence not a natural proof system, and (ii) weakening axiom clauses with existential variables provably yields an exponential advantage over MRes without weakening. We further show that in the context of regular derivations, weakening axiom clauses with universal variables provably yields an exponential advantage over M-Res without weakening. These results suggest that M-Res is better used with weakening, though whether M-Res with weakening is closed under restrictions remains open. We note that even with weakening, M-Res continues to be simulated by eFrege+∀red (the simulation of ordinary M-Res was shown recently by Chew and Slivovsky).

Cite as

Meena Mahajan and Gaurav Sood. QBF Merge Resolution Is Powerful but Unnatural. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mahajan_et_al:LIPIcs.SAT.2022.22,
  author =	{Mahajan, Meena and Sood, Gaurav},
  title =	{{QBF Merge Resolution Is Powerful but Unnatural}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.22},
  URN =		{urn:nbn:de:0030-drops-166969},
  doi =		{10.4230/LIPIcs.SAT.2022.22},
  annote =	{Keywords: QBF, proof complexity, resolution, weakening, restrictions}
}
Document
Hard QBFs for Merge Resolution

Authors: Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomáš Peitl, and Gaurav Sood

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We prove the first proof size lower bounds for the proof system Merge Resolution (MRes [Olaf Beyersdorff et al., 2020]), a refutational proof system for prenex quantified Boolean formulas (QBF) with a CNF matrix. Unlike most QBF resolution systems in the literature, proofs in MRes consist of resolution steps together with information on countermodels, which are syntactically stored in the proofs as merge maps. As demonstrated in [Olaf Beyersdorff et al., 2020], this makes MRes quite powerful: it has strategy extraction by design and allows short proofs for formulas which are hard for classical QBF resolution systems. Here we show the first exponential lower bounds for MRes, thereby uncovering limitations of MRes. Technically, the results are either transferred from bounds from circuit complexity (for restricted versions of MRes) or directly obtained by combinatorial arguments (for full MRes). Our results imply that the MRes approach is largely orthogonal to other QBF resolution models such as the QCDCL resolution systems QRes and QURes and the expansion systems ∀Exp+Res and IR.

Cite as

Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomáš Peitl, and Gaurav Sood. Hard QBFs for Merge Resolution. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 12:1-12:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{beyersdorff_et_al:LIPIcs.FSTTCS.2020.12,
  author =	{Beyersdorff, Olaf and Blinkhorn, Joshua and Mahajan, Meena and Peitl, Tom\'{a}\v{s} and Sood, Gaurav},
  title =	{{Hard QBFs for Merge Resolution}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.12},
  URN =		{urn:nbn:de:0030-drops-132530},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.12},
  annote =	{Keywords: QBF, resolution, proof complexity, lower bounds}
}
  • Refine by Author
  • 3 Peitl, Tomáš
  • 2 Beyersdorff, Olaf
  • 2 Mahajan, Meena
  • 2 Sood, Gaurav
  • 1 Blinkhorn, Joshua
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Proof complexity
  • 1 Mathematics of computing → Graph coloring
  • 1 Mathematics of computing → Graph enumeration
  • 1 Mathematics of computing → Hypergraphs
  • 1 Mathematics of computing → Matchings and factors
  • Show More...

  • Refine by Keyword
  • 3 QBF
  • 3 proof complexity
  • 2 lower bounds
  • 2 resolution
  • 1 CDCL
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2022
  • 1 2020
  • 1 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail