1 Search Results for "Sankaranarayanan, Sriram"


Document
Weighted Transducers for Robustness Verification

Authors: Emmanuel Filiot, Nicolas Mazzocchi, Jean-François Raskin, Sriram Sankaranarayanan, and Ashutosh Trivedi

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
Automata theory provides us with fundamental notions such as languages, membership, emptiness and inclusion that in turn allow us to specify and verify properties of reactive systems in a useful manner. However, these notions all yield "yes"/"no" answers that sometimes fall short of being satisfactory answers when the models being analyzed are imperfect, and the observations made are prone to errors. To address this issue, a common engineering approach is not just to verify that a system satisfies a property, but whether it does so robustly. We present notions of robustness that place a metric on words, thus providing a natural notion of distance between words. Such a metric naturally leads to a topological neighborhood of words and languages, leading to quantitative and robust versions of the membership, emptiness and inclusion problems. More generally, we consider weighted transducers to model the cost of errors. Such a transducer models neighborhoods of words by providing the cost of rewriting a word into another. The main contribution of this work is to study robustness verification problems in the context of weighted transducers. We provide algorithms for solving the robust and quantitative versions of the membership and inclusion problems while providing useful motivating case studies including approximate pattern matching problems to detect clinically relevant events in a large type-1 diabetes dataset.

Cite as

Emmanuel Filiot, Nicolas Mazzocchi, Jean-François Raskin, Sriram Sankaranarayanan, and Ashutosh Trivedi. Weighted Transducers for Robustness Verification. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{filiot_et_al:LIPIcs.CONCUR.2020.17,
  author =	{Filiot, Emmanuel and Mazzocchi, Nicolas and Raskin, Jean-Fran\c{c}ois and Sankaranarayanan, Sriram and Trivedi, Ashutosh},
  title =	{{Weighted Transducers for Robustness Verification}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.17},
  URN =		{urn:nbn:de:0030-drops-128290},
  doi =		{10.4230/LIPIcs.CONCUR.2020.17},
  annote =	{Keywords: Weighted transducers, Quantitative verification, Fault-tolerance}
}
  • Refine by Author
  • 1 Filiot, Emmanuel
  • 1 Mazzocchi, Nicolas
  • 1 Raskin, Jean-François
  • 1 Sankaranarayanan, Sriram
  • 1 Trivedi, Ashutosh

  • Refine by Classification
  • 1 Computer systems organization → Reliability
  • 1 Theory of computation → Formal languages and automata theory

  • Refine by Keyword
  • 1 Fault-tolerance
  • 1 Quantitative verification
  • 1 Weighted transducers

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail