2 Search Results for "Sauerwald, Natalie"


Document
Exact Transcript Quantification Over Splice Graphs

Authors: Cong Ma, Hongyu Zheng, and Carl Kingsford

Published in: LIPIcs, Volume 172, 20th International Workshop on Algorithms in Bioinformatics (WABI 2020)


Abstract
The probability of sequencing a set of RNA-seq reads can be directly modeled using the abundances of splice junctions in splice graphs instead of the abundances of a list of transcripts. We call this model graph quantification, which was first proposed by Bernard et al. (2014). The model can be viewed as a generalization of transcript expression quantification where every full path in the splice graph is a possible transcript. However, the previous graph quantification model assumes the length of single-end reads or paired-end fragments is fixed. We provide an improvement of this model to handle variable-length reads or fragments and incorporate bias correction. We prove that our model is equivalent to running a transcript quantifier with exactly the set of all compatible transcripts. The key to our method is constructing an extension of the splice graph based on Aho-Corasick automata. The proof of equivalence is based on a novel reparameterization of the read generation model of a state-of-art transcript quantification method. This new approach is useful for modeling scenarios where reference transcriptome is incomplete or not available and can be further used in transcriptome assembly or alternative splicing analysis.

Cite as

Cong Ma, Hongyu Zheng, and Carl Kingsford. Exact Transcript Quantification Over Splice Graphs. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ma_et_al:LIPIcs.WABI.2020.12,
  author =	{Ma, Cong and Zheng, Hongyu and Kingsford, Carl},
  title =	{{Exact Transcript Quantification Over Splice Graphs}},
  booktitle =	{20th International Workshop on Algorithms in Bioinformatics (WABI 2020)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-161-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{172},
  editor =	{Kingsford, Carl and Pisanti, Nadia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2020.12},
  URN =		{urn:nbn:de:0030-drops-128013},
  doi =		{10.4230/LIPIcs.WABI.2020.12},
  annote =	{Keywords: RNA-seq, alternative splicing, transcript quantification, splice graph, network flow}
}
Document
Topological Data Analysis Reveals Principles of Chromosome Structure in Cellular Differentiation

Authors: Natalie Sauerwald, Yihang Shen, and Carl Kingsford

Published in: LIPIcs, Volume 143, 19th International Workshop on Algorithms in Bioinformatics (WABI 2019)


Abstract
Topological data analysis (TDA) is a mathematically well-founded set of methods to derive robust information about the structure and topology of data. It has been applied successfully in several biological contexts. Derived primarily from algebraic topology, TDA rigorously identifies persistent features in complex data, making it well-suited to better understand the key features of three-dimensional chromosome structure. Chromosome structure has a significant influence in many diverse genomic processes and has recently been shown to relate to cellular differentiation. While there exist many methods to study specific substructures of chromosomes, we are still missing a global view of all geometric features of chromosomes. By applying TDA to the study of chromosome structure through differentiation across three cell lines, we provide insight into principles of chromosome folding and looping. We identify persistent connected components and one-dimensional topological features of chromosomes and characterize them across cell types and stages of differentiation. Availability: Scripts to reproduce the results from this study can be found at https://github.com/Kingsford-Group/hictda

Cite as

Natalie Sauerwald, Yihang Shen, and Carl Kingsford. Topological Data Analysis Reveals Principles of Chromosome Structure in Cellular Differentiation. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 143, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sauerwald_et_al:LIPIcs.WABI.2019.23,
  author =	{Sauerwald, Natalie and Shen, Yihang and Kingsford, Carl},
  title =	{{Topological Data Analysis Reveals Principles of Chromosome Structure in Cellular Differentiation}},
  booktitle =	{19th International Workshop on Algorithms in Bioinformatics (WABI 2019)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-123-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{143},
  editor =	{Huber, Katharina T. and Gusfield, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2019.23},
  URN =		{urn:nbn:de:0030-drops-110537},
  doi =		{10.4230/LIPIcs.WABI.2019.23},
  annote =	{Keywords: topological data analysis, chromosome structure, Hi-C, topologically associating domains}
}
  • Refine by Author
  • 2 Kingsford, Carl
  • 1 Ma, Cong
  • 1 Sauerwald, Natalie
  • 1 Shen, Yihang
  • 1 Zheng, Hongyu

  • Refine by Classification
  • 1 Applied computing
  • 1 Applied computing → Computational biology
  • 1 Applied computing → Computational transcriptomics

  • Refine by Keyword
  • 1 Hi-C
  • 1 RNA-seq
  • 1 alternative splicing
  • 1 chromosome structure
  • 1 network flow
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2019
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail