10 Search Results for "Sch�fer, Peter"


Document
Challenges in Benchmarking Optimization Heuristics (Dagstuhl Seminar 23251)

Authors: Anne Auger, Peter A. N. Bosman, Pascal Kerschke, Darrell Whitley, and Lennart Schäpermeier

Published in: Dagstuhl Reports, Volume 13, Issue 6 (2024)


Abstract
This report documents the program and outcomes of the Dagstuhl Seminar 23251 "Challenges in Benchmarking Optimization Heuristics". In the domain of optimization heuristics, a stable basis for fairly evaluating the performance of optimization algorithms and other solution approaches - commonly referred to as "benchmarking" - is fundamental to ensuring steady scientific progress. Although many pitfalls are well known in the community, the development of sound benchmarking protocols is slow, and the adoption of community-wide recognized and implementable standards requires lasting and joint efforts among research groups. This seminar brought together people from diverse backgrounds and fostered discussions among different optimization communities, focusing on how to cope with "horse racing papers", landscape analysis techniques for understanding problem instances, and discussions about the overarching goals of benchmarking.

Cite as

Anne Auger, Peter A. N. Bosman, Pascal Kerschke, Darrell Whitley, and Lennart Schäpermeier. Challenges in Benchmarking Optimization Heuristics (Dagstuhl Seminar 23251). In Dagstuhl Reports, Volume 13, Issue 6, pp. 55-80, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{auger_et_al:DagRep.13.6.55,
  author =	{Auger, Anne and Bosman, Peter A. N. and Kerschke, Pascal and Whitley, Darrell and Sch\"{a}permeier, Lennart},
  title =	{{Challenges in Benchmarking Optimization Heuristics (Dagstuhl Seminar 23251)}},
  pages =	{55--80},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{6},
  editor =	{Auger, Anne and Bosman, Peter A. N. and Kerschke, Pascal and Whitley, Darrell and Sch\"{a}permeier, Lennart},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.13.6.55},
  URN =		{urn:nbn:de:0030-drops-196383},
  doi =		{10.4230/DagRep.13.6.55},
  annote =	{Keywords: benchmarking, design of search heuristics, optimization, real-world applications, understanding problem complexity}
}
Document
Choiceless Logarithmic Space

Authors: Erich Grädel and Svenja Schalthöfer

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
One of the most important open problems in finite model theory is the question whether there is a logic characterising efficient computation. While this question usually concerns Ptime, it can also be applied to other complexity classes, and in particular to Logspace which can be seen as a formalisation of efficient computation for big data. One of the strongest candidates for a logic capturing Ptime is Choiceless Polynomial Time (CPT). It is based on the idea of choiceless algorithms, a general model of symmetric computation over abstract structures (rather than their encodings by finite strings). However, there is currently neither a comparably strong candidate for a logic for Logspace, nor a logic transferring the idea of choiceless computation to Logspace. We propose here a notion of Choiceless Logarithmic Space which overcomes some of the obstacles posed by Logspace as a less robust complexity class. The resulting logic is contained in both Logspace and CPT, and is strictly more expressive than all logics for Logspace that have been known so far. Further, we address the question whether this logic can define all Logspace-queries, and prove that this is not the case.

Cite as

Erich Grädel and Svenja Schalthöfer. Choiceless Logarithmic Space. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 31:1-31:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gradel_et_al:LIPIcs.MFCS.2019.31,
  author =	{Gr\"{a}del, Erich and Schalth\"{o}fer, Svenja},
  title =	{{Choiceless Logarithmic Space}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{31:1--31:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.31},
  URN =		{urn:nbn:de:0030-drops-109758},
  doi =		{10.4230/LIPIcs.MFCS.2019.31},
  annote =	{Keywords: Finite Model Theory, Logics for Logspace, Choiceless Computation}
}
Document
Multimedia Exposition
Fréchet View - A Tool for Exploring Fréchet Distance Algorithms (Multimedia Exposition)

Authors: Peter Schäfer

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
The Fréchet-distance is a similarity measure for geometric shapes. Alt and Godau presented the first algorithm for computing the Fréchet-distance and introduced a key concept, the free-space diagram. Since then, numerous variants of the Fréchet-distance have been studied. We present here an interactive, graphical tool for exploring some Fréchet-distance algorithms. Given two curves, users can experiment with the free-space diagram and compute the Fréchet-distance. The Fréchet-distance can be computed for two important classes of shapes: for polygonal curves in the plane, and for simple polygonal surfaces. Finally, we demonstrate an implementation of a very recent concept, the k-Fréchet-distance.

Cite as

Peter Schäfer. Fréchet View - A Tool for Exploring Fréchet Distance Algorithms (Multimedia Exposition). In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 66:1-66:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{schafer:LIPIcs.SoCG.2019.66,
  author =	{Sch\"{a}fer, Peter},
  title =	{{Fr\'{e}chet View - A Tool for Exploring Fr\'{e}chet Distance Algorithms}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{66:1--66:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.66},
  URN =		{urn:nbn:de:0030-drops-104703},
  doi =		{10.4230/LIPIcs.SoCG.2019.66},
  annote =	{Keywords: Fr\'{e}chet distance, free-space diagram, polygonal curves, simple polygons}
}
Document
Integrating Passengers' Routes in Periodic Timetabling: A SAT approach

Authors: Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel

Published in: OASIcs, Volume 54, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)


Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically hard. Its main application is for designing periodic timetables in public transportation. To this end, the passengers' paths are required as input data. This is a drawback since the final paths which are used by the passengers depend on the timetable to be designed. Including the passengers' routing in the PESP hence improves the quality of the resulting timetables. However, this makes PESP even harder. Formulating the PESP as satisfiability problem and using SAT solvers for its solution has been shown to be a highly promising approach. The goal of this paper is to exploit if SAT solvers can also be used for the problem of integrated timetabling and passenger routing. In our model of the integrated problem we distribute origin-destination (OD) pairs temporally through the network by using time-slices in order to make the resulting model more realistic. We present a formulation of this integrated problem as integer program which we are able to transform to a satisfiability problem. We tested the latter formulation within numerical experiments, which are performed on Germany's long-distance passenger railway network. The computation's analysis in which we compare the integrated approach with the traditional one with fixed passengers' weights, show promising results for future scientific investigations.

Cite as

Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel. Integrating Passengers' Routes in Periodic Timetabling: A SAT approach. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gattermann_et_al:OASIcs.ATMOS.2016.3,
  author =	{Gattermann, Philine and Gro{\ss}mann, Peter and Nachtigall, Karl and Sch\"{o}bel, Anita},
  title =	{{Integrating Passengers' Routes in Periodic Timetabling: A SAT approach}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{3:1--3:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.3},
  URN =		{urn:nbn:de:0030-drops-65279},
  doi =		{10.4230/OASIcs.ATMOS.2016.3},
  annote =	{Keywords: PESP, Timetabling, Public Transport, Passengers' Routes, SAT}
}
Document
Vertex Disjoint Paths for Dispatching in Railways

Authors: Holger Flier, Matús Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych

Published in: OASIcs, Volume 14, 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS'10) (2010)


Abstract
We study variants of the vertex disjoint paths problem in planar graphs where paths have to be selected from a given set of paths. We study the problem as a decision, maximization, and routing-in-rounds problem. Although all considered variants are NP-hard in planar graphs, restrictions on the location of the terminals, motivated by railway applications, lead to polynomially solvable cases for the decision and maximization versions of the problem, and to a $p$-approximation algorithm for the routing-in-rounds problem, where $p$ is the maximum number of alternative paths for a terminal pair.

Cite as

Holger Flier, Matús Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych. Vertex Disjoint Paths for Dispatching in Railways. In 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS'10). Open Access Series in Informatics (OASIcs), Volume 14, pp. 61-73, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{flier_et_al:OASIcs.ATMOS.2010.61,
  author =	{Flier, Holger and Mihal\'{a}k, Mat\'{u}s and Sch\"{o}bel, Anita and Widmayer, Peter and Zych, Anna},
  title =	{{Vertex Disjoint Paths for Dispatching in Railways}},
  booktitle =	{10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS'10)},
  pages =	{61--73},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-20-0},
  ISSN =	{2190-6807},
  year =	{2010},
  volume =	{14},
  editor =	{Erlebach, Thomas and L\"{u}bbecke, Marco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2010.61},
  URN =		{urn:nbn:de:0030-drops-27508},
  doi =		{10.4230/OASIcs.ATMOS.2010.61},
  annote =	{Keywords: algorithms, approximation, complexity, graph theory, railways, routing, transportation}
}
Document
Dynamic Algorithms for Recoverable Robustness Problems

Authors: Serafino Cicerone, Gabriele Di Stefano, Michael Schachtebeck, and Anita Schöbel

Published in: OASIcs, Volume 9, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08) (2008)


Abstract
Recently, the recoverable robustness model has been introduced in the optimization area. This model allows to consider disruptions (input data changes) in a unified way, that is, during both the strategic planning phase and the operational phase. Although the model represents a significant improvement, it has the following drawback: we are typically not facing only one disruption, but many of them might appear one after another. In this case, the solutions provided in the context of the recoverable robustness are not satisfying. In this paper we extend the concept of recoverable robustness to deal not only with one single recovery step, but with arbitrarily many recovery steps. To this aim, we introduce the notion of dynamic recoverable robustness problems. We apply the new model in the context of timetabling and delay management problems. We are interested in finding efficient dynamic robust algorithms for solving the timetabling problem and in evaluating the price of robustness of the proposed solutions.

Cite as

Serafino Cicerone, Gabriele Di Stefano, Michael Schachtebeck, and Anita Schöbel. Dynamic Algorithms for Recoverable Robustness Problems. In 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08). Open Access Series in Informatics (OASIcs), Volume 9, pp. 1-20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{cicerone_et_al:OASIcs.ATMOS.2008.1587,
  author =	{Cicerone, Serafino and Di Stefano, Gabriele and Schachtebeck, Michael and Sch\"{o}bel, Anita},
  title =	{{Dynamic Algorithms for Recoverable Robustness Problems}},
  booktitle =	{8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08)},
  pages =	{1--20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-07-1},
  ISSN =	{2190-6807},
  year =	{2008},
  volume =	{9},
  editor =	{Fischetti, Matteo and Widmayer, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2008.1587},
  URN =		{urn:nbn:de:0030-drops-15876},
  doi =		{10.4230/OASIcs.ATMOS.2008.1587},
  annote =	{Keywords: Robustness, optimization problems, dynamic algorithms, timetabling, delay management}
}
Document
IP-based Techniques for Delay Management with Priority Decisions

Authors: Michael Schachtebeck and Anita Schöbel

Published in: OASIcs, Volume 9, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08) (2008)


Abstract
Delay management is an important issue in the daily operations of any railway company. The task is to update the planned timetable to a disposition timetable in such a way that the inconvenience for the passengers is as small as possible. The two main decisions that have to be made in this respect are the wait-depart decisions to decide which connections should be maintained in case of delays and the priority decisions that determine the order in which trains are allowed to pass a specific piece of track. They later are necessary in the capacitated case due to the limited capacity of the track system and are crucial to ensure that the headways between different trains are respected and that single-track traffic is routed correctly. While the wait-depart decisions have been intensively studied in literature (e.g. [Sch06,Gat07]), the priority decisions in the capacitated case have been neglected so far in delay management optimization models. In the current paper, we add the priority decisions to the integer programming formulation of the delay management problem and are hence able to deal with the capacitated case. Unfortunately, these constraints are disjunctive constraints that make the resulting event activity network more dense and destroy the property that it does not contain any directed cycle. Nevertheless, we are able to derive reduction techniques for the network which enable us to extend the formulation of the never-meet property from the uncapacitated delay management problem to the capacitated case. We then use our results to derive exact and heuristic solution procedures for solving the delay management problem. The results of the algorithms are evaluated both from a theoretical and a numerical point of view. The latter has been done within a case study using the railway network in the region of Harz, Germany.

Cite as

Michael Schachtebeck and Anita Schöbel. IP-based Techniques for Delay Management with Priority Decisions. In 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08). Open Access Series in Informatics (OASIcs), Volume 9, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{schachtebeck_et_al:OASIcs.ATMOS.2008.1586,
  author =	{Schachtebeck, Michael and Sch\"{o}bel, Anita},
  title =	{{IP-based Techniques for Delay Management with Priority Decisions}},
  booktitle =	{8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08)},
  pages =	{1--16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-07-1},
  ISSN =	{2190-6807},
  year =	{2008},
  volume =	{9},
  editor =	{Fischetti, Matteo and Widmayer, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2008.1586},
  URN =		{urn:nbn:de:0030-drops-15862},
  doi =		{10.4230/OASIcs.ATMOS.2008.1586},
  annote =	{Keywords: Public transportation, delay, integer programming, never-meet property, heuristics, preprocessing}
}
Document
Subwords in reverse-complement order

Authors: Péter L. Erdös, Péter Ligeti, Péter Sziklai, and David C. Torney

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
We examine finite words over an alphabet $Gamma={a,bar{a};b,bar{b}}$ of pairs of letters, where each word $w_1w_2...w_t$ is identical with its {it reverse complement} $bar{w_t}...bar{w_2}bar{w_1}$ (where $bar{bbar{a}}=a,bar{bar{b}}=b$). We seek the smallest $k$ such that every word of length $n,$ composed from $Gamma$, is uniquely determined by the set of its subwords of length up to $k$. Our almost sharp result ($ksim 2n/3$) is an analogue of a classical result for ``normal'' words. This classical problem originally was posed by M.P. Sch"utzenberger and I. Simon, and gained a considerable interest for several researchers, foremost by Vladimir Levenshtein. Our problem has its roots in bioinformatics.

Cite as

Péter L. Erdös, Péter Ligeti, Péter Sziklai, and David C. Torney. Subwords in reverse-complement order. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{erdos_et_al:DagSemProc.06201.10,
  author =	{Erd\"{o}s, P\'{e}ter L. and Ligeti, P\'{e}ter and Sziklai, P\'{e}ter and Torney, David C.},
  title =	{{Subwords in reverse-complement order}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.10},
  URN =		{urn:nbn:de:0030-drops-7856},
  doi =		{10.4230/DagSemProc.06201.10},
  annote =	{Keywords: Reverse complement order, Reconstruction of words, Microarray experiments}
}
Document
Dagstuhl-Manifest zur Strategischen Bedeutung des Software Engineering in Deutschland

Authors: Manfred Broy, Matthias Jarke, Manfred Nagl, Hans Dieter Rombach, Armin B. Cremers, Jürgen Ebert, Sabine Glesner, Martin Glinz, Michael Goedicke, Gerhard Goos, Volker Gruhn, Wilhelm Hasselbring, Stefan Jähnichen, Stefan Kowalewski, Bernd J. Krämer, Stefan Leue, Claus Lewerentz, Peter Liggesmeyer, Christoph Lüth, Barbara Paech, Helmut A. Partsch, Ilka Philippow, Lutz Prechelt, Andreas Rausch, Willem-Paul de Roever, Bernhard Rumpe, Gudula Rünger, Wilhelm Schäfer, Kurt Schneider, Andy Schürr, Walter F. Tichy, Bernhard Westfechtel, Wolf Zimmermann, and Albert Zündorf

Published in: Dagstuhl Seminar Proceedings, Volume 5402, Perspectives Workshop (2006)


Abstract
Im Rahmen des Dagstuhl Perspektiven Workshop 05402 "Challenges for Software Engineering Research" haben führende Software Engineering Professoren den derzeitigen Stand der Softwaretechnik in Deutschland charakterisiert und Handlungsempfehlungen für Wirtschaft, Forschung und Politik abgeleitet. Das Manifest fasst die diese Empfehlungen und die Bedeutung und Entwicklung des Fachgebiets prägnant zusammen.

Cite as

Manfred Broy, Matthias Jarke, Manfred Nagl, Hans Dieter Rombach, Armin B. Cremers, Jürgen Ebert, Sabine Glesner, Martin Glinz, Michael Goedicke, Gerhard Goos, Volker Gruhn, Wilhelm Hasselbring, Stefan Jähnichen, Stefan Kowalewski, Bernd J. Krämer, Stefan Leue, Claus Lewerentz, Peter Liggesmeyer, Christoph Lüth, Barbara Paech, Helmut A. Partsch, Ilka Philippow, Lutz Prechelt, Andreas Rausch, Willem-Paul de Roever, Bernhard Rumpe, Gudula Rünger, Wilhelm Schäfer, Kurt Schneider, Andy Schürr, Walter F. Tichy, Bernhard Westfechtel, Wolf Zimmermann, and Albert Zündorf. Dagstuhl-Manifest zur Strategischen Bedeutung des Software Engineering in Deutschland. In Perspectives Workshop. Dagstuhl Seminar Proceedings, Volume 5402, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{broy_et_al:DagSemProc.05402.1,
  author =	{Broy, Manfred and Jarke, Matthias and Nagl, Manfred and Rombach, Hans Dieter and Cremers, Armin B. and Ebert, J\"{u}rgen and Glesner, Sabine and Glinz, Martin and Goedicke, Michael and Goos, Gerhard and Gruhn, Volker and Hasselbring, Wilhelm and J\"{a}hnichen, Stefan and Kowalewski, Stefan and Kr\"{a}mer, Bernd J. and Leue, Stefan and Lewerentz, Claus and Liggesmeyer, Peter and L\"{u}th, Christoph and Paech, Barbara and Partsch, Helmut A. and Philippow, Ilka and Prechelt, Lutz and Rausch, Andreas and de Roever, Willem-Paul and Rumpe, Bernhard and R\"{u}nger, Gudula and Sch\"{a}fer, Wilhelm and Schneider, Kurt and Sch\"{u}rr, Andy and Tichy, Walter F. and Westfechtel, Bernhard and Zimmermann, Wolf and Z\"{u}ndorf, Albert},
  title =	{{Dagstuhl-Manifest zur Strategischen Bedeutung des Software Engineering in Deutschland}},
  booktitle =	{Perspectives Workshop},
  pages =	{1--16},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5402},
  editor =	{Manfred Broy and Manfred Nagl and Hans Dieter Rombach and Matthias Jarke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.05402.1},
  URN =		{urn:nbn:de:0030-drops-5853},
  doi =		{10.4230/DagSemProc.05402.1},
  annote =	{Keywords: Software Engineering, Software Technik, Strategie}
}
Document
Facility location with uncertain demand and economies of scale

Authors: Peter Schütz, Leen Stougie, and Asgeir Tomasgard

Published in: Dagstuhl Seminar Proceedings, Volume 5031, Algorithms for Optimization with Incomplete Information (2005)


Abstract
This paper adresses facility location under uncertain demand. The problem is to determine the optimal location of facilities and allocation of uncertain customer demand to these facilities. The costs of operating the facilities are subject to economies of scale. The objective is to minimize the total expected costs. These costs can be split into two parts: firstly the costs of investing in a facility as well as maintaining and operating it with strictly diminishing average costs, and secondly linear transportation cost. We formulate the problem as a two-stage stochastic programming model and present a solution method based on Lagrangian Relaxation. We also show some computional results based on data from the Norwegian meat industry regarding the location of slaughterhouses.

Cite as

Peter Schütz, Leen Stougie, and Asgeir Tomasgard. Facility location with uncertain demand and economies of scale. In Algorithms for Optimization with Incomplete Information. Dagstuhl Seminar Proceedings, Volume 5031, pp. 1-11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{schutz_et_al:DagSemProc.05031.11,
  author =	{Sch\"{u}tz, Peter and Stougie, Leen and Tomasgard, Asgeir},
  title =	{{Facility location with uncertain demand and economies of scale}},
  booktitle =	{Algorithms for Optimization with Incomplete Information},
  pages =	{1--11},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5031},
  editor =	{Susanne Albers and Rolf H. M\"{o}hring and Georg Ch. Pflug and R\"{u}diger Schultz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.05031.11},
  URN =		{urn:nbn:de:0030-drops-1114},
  doi =		{10.4230/DagSemProc.05031.11},
  annote =	{Keywords: facility location , stochastic , economies of scale}
}
  • Refine by Author
  • 4 Schöbel, Anita
  • 2 Schachtebeck, Michael
  • 1 Auger, Anne
  • 1 Bosman, Peter A. N.
  • 1 Broy, Manfred
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Search methodologies
  • 1 General and reference → Empirical studies
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Finite Model Theory

  • Refine by Keyword
  • 1 Choiceless Computation
  • 1 Finite Model Theory
  • 1 Fréchet distance
  • 1 Logics for Logspace
  • 1 Microarray experiments
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 2 2006
  • 2 2008
  • 2 2019
  • 1 2005
  • 1 2010
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail