2 Search Results for "Schalthöfer, Svenja"


Document
Choiceless Logarithmic Space

Authors: Erich Grädel and Svenja Schalthöfer

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
One of the most important open problems in finite model theory is the question whether there is a logic characterising efficient computation. While this question usually concerns Ptime, it can also be applied to other complexity classes, and in particular to Logspace which can be seen as a formalisation of efficient computation for big data. One of the strongest candidates for a logic capturing Ptime is Choiceless Polynomial Time (CPT). It is based on the idea of choiceless algorithms, a general model of symmetric computation over abstract structures (rather than their encodings by finite strings). However, there is currently neither a comparably strong candidate for a logic for Logspace, nor a logic transferring the idea of choiceless computation to Logspace. We propose here a notion of Choiceless Logarithmic Space which overcomes some of the obstacles posed by Logspace as a less robust complexity class. The resulting logic is contained in both Logspace and CPT, and is strictly more expressive than all logics for Logspace that have been known so far. Further, we address the question whether this logic can define all Logspace-queries, and prove that this is not the case.

Cite as

Erich Grädel and Svenja Schalthöfer. Choiceless Logarithmic Space. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 31:1-31:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gradel_et_al:LIPIcs.MFCS.2019.31,
  author =	{Gr\"{a}del, Erich and Schalth\"{o}fer, Svenja},
  title =	{{Choiceless Logarithmic Space}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{31:1--31:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.31},
  URN =		{urn:nbn:de:0030-drops-109758},
  doi =		{10.4230/LIPIcs.MFCS.2019.31},
  annote =	{Keywords: Finite Model Theory, Logics for Logspace, Choiceless Computation}
}
Document
Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

Authors: Wied Pakusa, Svenja Schalthöfer, and Erkal Selman

Published in: LIPIcs, Volume 62, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016)


Abstract
Choiceless Polynomial Time (CPT) is one of the most promising candidates in the search for a logic capturing Ptime. The question whether there is a logic that expresses exactly the polynomial-time computable properties of finite structures, which has been open for more than 30 years, is one of the most important and challenging problems in finite model theory. The strength of Choiceless Polynomial Time is its ability to perform isomorphism-invariant computations over structures, using hereditarily finite sets as data structures. But, as it preserves symmetries, it is choiceless in the sense that it cannot select an arbitrary element of a set - an operation which is crucial for many classical algorithms. CPT can define many interesting Ptime queries, including (the original version of) the Cai-Fürer-Immerman (CFI) query. The CFI query is particularly interesting because it separates fixed-point logic with counting from Ptime, and has since remained the main benchmark for the expressibility of logics within Ptime. The CFI construction associates with each connected graph a set of CFI-graphs that can be partitioned into exactly two isomorphism classes called odd and even CFI-graphs. The problem is to decide, given a CFI-graph, whether it is odd or even. In the original version, the underlying graphs are linearly ordered, and for this case, Dawar, Richerby and Rossman proved that the CFI query is CPT-definable. However, the CFI query over general graphs remains one of the few known examples for which CPT-definability is open. Our first contribution generalises the result by Dawar, Richerby and Rossman to the variant of the CFI query where the underlying graphs have colour classes of logarithmic size, instead of colour class size one. Secondly, we consider the CFI query over graph classes where the maximal degree is linear in the size of the graphs. For these classes, we establish CPT-definability using only sets of small, constant rank, which is known to be impossible for the general case. In our CFI-recognising procedures we strongly make use of the ability of CPT to create sets, rather than tuples only, and we further prove that, if CPT worked over tuples instead, no such procedure would be definable. We introduce a notion of "sequence-like objects" based on the structure of the graphs' symmetry groups, and we show that no CPT-program which only uses sequence-like objects can decide the CFI query over complete graphs, which have linear maximal degree. From a broader perspective, this generalises a result by Blass, Gurevich, and van den Bussche about the power of isomorphism-invariant machine models (for polynomial time) to a setting with counting.

Cite as

Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{pakusa_et_al:LIPIcs.CSL.2016.19,
  author =	{Pakusa, Wied and Schalth\"{o}fer, Svenja and Selman, Erkal},
  title =	{{Definability of Cai-F\"{u}rer-Immerman Problems in Choiceless Polynomial Time}},
  booktitle =	{25th EACSL Annual Conference on Computer Science Logic (CSL 2016)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-022-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{62},
  editor =	{Talbot, Jean-Marc and Regnier, Laurent},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.19},
  URN =		{urn:nbn:de:0030-drops-65595},
  doi =		{10.4230/LIPIcs.CSL.2016.19},
  annote =	{Keywords: finite model theory, descriptive complexity, logic for textsc\{Ptime\}, Choiceless Polynomial Time, Cai-F\"{u}rer-Immerman}
}
  • Refine by Author
  • 2 Schalthöfer, Svenja
  • 1 Grädel, Erich
  • 1 Pakusa, Wied
  • 1 Selman, Erkal

  • Refine by Classification
  • 1 Theory of computation → Finite Model Theory

  • Refine by Keyword
  • 1 Cai-Fürer-Immerman
  • 1 Choiceless Computation
  • 1 Choiceless Polynomial Time
  • 1 Finite Model Theory
  • 1 Logics for Logspace
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail