8 Search Results for "Schröder-Heister, Peter"


Document
Worst-Case Energy-Consumption Analysis by Microarchitecture-Aware Timing Analysis for Device-Driven Cyber-Physical Systems

Authors: Phillip Raffeck, Christian Eichler, Peter Wägemann, and Wolfgang Schröder-Preikschat

Published in: OASIcs, Volume 72, 19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019)


Abstract
Many energy-constrained cyber-physical systems require both timeliness and the execution of tasks within given energy budgets. That is, besides knowledge on worst-case execution time (WCET), the worst-case energy consumption (WCEC) of operations is essential. Unfortunately, WCET analysis approaches are not directly applicable for deriving WCEC bounds in device-driven cyber-physical systems: For example, a single memory operation can lead to a significant power-consumption increase when thereby switching on a device (e.g. transceiver, actuator) in the embedded system. However, as we demonstrate in this paper, existing approaches from microarchitecture-aware timing analysis (i.e. considering cache and pipeline effects) are beneficial for determining WCEC bounds: We extended our framework on whole-system analysis with microarchitecture-aware timing modeling to precisely account for the execution time that devices are kept (in)active. Our evaluations based on a benchmark generator, which is able to output benchmarks with known baselines (i.e. actual WCET and actual WCEC), and an ARM Cortex-M4 platform validate that the approach significantly reduces analysis pessimism in whole-system WCEC analyses.

Cite as

Phillip Raffeck, Christian Eichler, Peter Wägemann, and Wolfgang Schröder-Preikschat. Worst-Case Energy-Consumption Analysis by Microarchitecture-Aware Timing Analysis for Device-Driven Cyber-Physical Systems. In 19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019). Open Access Series in Informatics (OASIcs), Volume 72, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{raffeck_et_al:OASIcs.WCET.2019.4,
  author =	{Raffeck, Phillip and Eichler, Christian and W\"{a}gemann, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{Worst-Case Energy-Consumption Analysis by Microarchitecture-Aware Timing Analysis for Device-Driven Cyber-Physical Systems}},
  booktitle =	{19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019)},
  pages =	{4:1--4:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-118-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{72},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2019.4},
  URN =		{urn:nbn:de:0030-drops-107699},
  doi =		{10.4230/OASIcs.WCET.2019.4},
  annote =	{Keywords: WCEC, WCRE, WCET, michroarchitecture analysis, whole-system analysis}
}
Document
TASKers: A Whole-System Generator for Benchmarking Real-Time-System Analyses

Authors: Christian Eichler, Tobias Distler, Peter Ulbrich, Peter Wägemann, and Wolfgang Schröder-Preikschat

Published in: OASIcs, Volume 63, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)


Abstract
Implementation-based benchmarking of timing and schedulability analyses requires system code that can be executed on real hardware and has defined properties, for example, known worst-case execution times (WCETs) of tasks. Traditional approaches for creating benchmarks with such characteristics often result in implementations that do not resemble real-world systems, either due to work only being simulated by means of busy waiting, or because tasks have no control-flow dependencies between each other. In this paper, we address this problem with TASKers, a generator that constructs realistic benchmark systems with predefined properties. To achieve this, TASKers composes patterns of real-world programs to generate tasks that produce known outputs and exhibit preconfigured WCETs when being executed with certain inputs. Using this knowledge during the generation process, TASKers is able to specifically introduce inter-task control-flow dependencies by mapping the output of one task to the input of another.

Cite as

Christian Eichler, Tobias Distler, Peter Ulbrich, Peter Wägemann, and Wolfgang Schröder-Preikschat. TASKers: A Whole-System Generator for Benchmarking Real-Time-System Analyses. In 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018). Open Access Series in Informatics (OASIcs), Volume 63, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{eichler_et_al:OASIcs.WCET.2018.6,
  author =	{Eichler, Christian and Distler, Tobias and Ulbrich, Peter and W\"{a}gemann, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{TASKers: A Whole-System Generator for Benchmarking Real-Time-System Analyses}},
  booktitle =	{18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)},
  pages =	{6:1--6:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-073-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{63},
  editor =	{Brandner, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2018.6},
  URN =		{urn:nbn:de:0030-drops-97528},
  doi =		{10.4230/OASIcs.WCET.2018.6},
  annote =	{Keywords: benchmarking real-time-system analyses, task-set generation, whole-system generation, static timing analysis, WCET analysis}
}
Document
Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems

Authors: Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Published in: LIPIcs, Volume 106, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., transceivers, sensors) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques, for example, only focus on the processor and therefore do not consider the energy consumption of other hardware units. Apart from that, the typical approach for dealing with devices is to assume that all of them are always activated, which leads to high WCRE overestimations in the general case where a system switches off the devices that are currently not needed in order to minimize energy consumption. In this paper, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state-transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated.

Cite as

Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat. Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 106, pp. 24:1-24:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{wagemann_et_al:LIPIcs.ECRTS.2018.24,
  author =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems}},
  booktitle =	{30th Euromicro Conference on Real-Time Systems (ECRTS 2018)},
  pages =	{24:1--24:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-075-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{106},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2018.24},
  URN =		{urn:nbn:de:0030-drops-89795},
  doi =		{10.4230/LIPIcs.ECRTS.2018.24},
  annote =	{Keywords: energy-constrained real-time systems, worst-case energy consumption (WCEC), worst-case response energy consumption (WCRE), static whole-system analysis}
}
Document
Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact)

Authors: Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Published in: DARTS, Volume 4, Issue 2, Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
Although internal devices (e.g., memory, timers) and external devices (e.g., sensors, transceivers) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques only focus on the processor and neglect the energy consumption of other hardware units that are temporarily activated and deactivated in the system. To solve the problem of system-wide energy-consumption analysis, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state--transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated. In this artifact evaluation, which accompanies our related conference paper, we present easy to reproduce WCRE analyses with the SysWCEC framework using several benchmarks. The artifact comprises the generation of the power-state--transition graph from a given benchmark system and the formulation of an integer linear program whose solution eventually yields safe WCRE bounds.

Cite as

Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich, and Wolfgang Schröder-Preikschat. Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact). In Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Dagstuhl Artifacts Series (DARTS), Volume 4, Issue 2, pp. 7:1-7:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{wagemann_et_al:DARTS.4.2.7,
  author =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{Whole-System WCEC Analysis for Energy-Constrained Real-Time Systems (Artifact)}},
  pages =	{7:1--7:4},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2018},
  volume =	{4},
  number =	{2},
  editor =	{W\"{a}gemann, Peter and Dietrich, Christian and Distler, Tobias and Ulbrich, Peter and Schr\"{o}der-Preikschat, Wolfgang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.4.2.7},
  URN =		{urn:nbn:de:0030-drops-89756},
  doi =		{10.4230/DARTS.4.2.7},
  annote =	{Keywords: energy-constrained real-time systems, worst-case energy consumption (WCEC), worst-case response energy consumption (WCRE), static whole-system analysi}
}
Document
GenE: A Benchmark Generator for WCET Analysis

Authors: Peter Wägemann, Tobias Distler, Timo Hönig, Volkmar Sieh, and Wolfgang Schröder-Preikschat

Published in: OASIcs, Volume 47, 15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015)


Abstract
The fact that many benchmarks for evaluating worst-case execution time (WCET) analysis tools are based on real-world applications greatly increases the value of their results. However, at the same time, the complexity of these programs makes it difficult, sometimes even impossible, to obtain all corresponding flow facts (i.e., loop bounds, infeasible paths, and input values triggering the WCET), which are essential for a comprehensive evaluation. In this paper, we address this problem by presenting GenE, a benchmark generator that in addition to source code also provides the flow facts of the benchmarks created. To generate a new benchmark, the tool combines code patterns that are commonly found in real-time applications and are challenging for WCET analyzers. By keeping track of how patterns are put together, GenE is able to determine the flow facts of the resulting benchmark based on the known flow facts of the patterns used. Using this information, it is straightforward to synthesize the accurate WCET, which can then serve as a baseline for the evaluation of WCET analyzers.

Cite as

Peter Wägemann, Tobias Distler, Timo Hönig, Volkmar Sieh, and Wolfgang Schröder-Preikschat. GenE: A Benchmark Generator for WCET Analysis. In 15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015). Open Access Series in Informatics (OASIcs), Volume 47, pp. 33-43, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{wagemann_et_al:OASIcs.WCET.2015.33,
  author =	{W\"{a}gemann, Peter and Distler, Tobias and H\"{o}nig, Timo and Sieh, Volkmar and Schr\"{o}der-Preikschat, Wolfgang},
  title =	{{GenE: A Benchmark Generator for WCET Analysis}},
  booktitle =	{15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015)},
  pages =	{33--43},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-95-8},
  ISSN =	{2190-6807},
  year =	{2015},
  volume =	{47},
  editor =	{Cazorla, Francisco J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2015.33},
  URN =		{urn:nbn:de:0030-drops-52545},
  doi =		{10.4230/OASIcs.WCET.2015.33},
  annote =	{Keywords: WCET, benchmark generation, flow facts, WCET Tool Challenge}
}
Document
Extended Abstract
A Note on Closed Subsets in Quasi-zero-dimensional Qcb-spaces (Extended Abstract)

Authors: Matthias Schröder

Published in: OASIcs, Volume 11, 6th International Conference on Computability and Complexity in Analysis (CCA'09) (2009)


Abstract
We introduce the notion of quasi-zero-dimensionality as a substitute for the notion of zero-dimensionality, motivated by the fact that the latter behaves badly in the realm of qcb-spaces. We prove that the category $\QZ$ of quasi-zero-dimensional qcb$_0$-spaces is cartesian closed. Prominent examples of spaces in $\QZ$ are the spaces in the sequential hierarchy of the Kleene-Kreisel continuous functionals. Moreover, we characterise some types of closed subsets of $\QZ$-spaces in terms of their ability to allow extendability of continuous functions. These results are related to an open problem in Computable Analysis.

Cite as

Matthias Schröder. A Note on Closed Subsets in Quasi-zero-dimensional Qcb-spaces (Extended Abstract). In 6th International Conference on Computability and Complexity in Analysis (CCA'09). Open Access Series in Informatics (OASIcs), Volume 11, pp. 233-244, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{schroder:OASIcs.CCA.2009.2274,
  author =	{Schr\"{o}der, Matthias},
  title =	{{A Note on Closed Subsets in Quasi-zero-dimensional Qcb-spaces}},
  booktitle =	{6th International Conference on Computability and Complexity in Analysis (CCA'09)},
  pages =	{233--244},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-12-5},
  ISSN =	{2190-6807},
  year =	{2009},
  volume =	{11},
  editor =	{Bauer, Andrej and Hertling, Peter and Ko, Ker-I},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.CCA.2009.2274},
  URN =		{urn:nbn:de:0030-drops-22748},
  doi =		{10.4230/OASIcs.CCA.2009.2274},
  annote =	{Keywords: Computable analysis, Qcb-spaces, extendability}
}
Document
Proof Theory in Computer Science (Dagstuhl Seminar 01411)

Authors: Reinhard Kahle, Peter Schröder-Heister, and Robert F. Stärk

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

Reinhard Kahle, Peter Schröder-Heister, and Robert F. Stärk. Proof Theory in Computer Science (Dagstuhl Seminar 01411). Dagstuhl Seminar Report 322, pp. 1-18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2002)


Copy BibTex To Clipboard

@TechReport{kahle_et_al:DagSemRep.322,
  author =	{Kahle, Reinhard and Schr\"{o}der-Heister, Peter and St\"{a}rk, Robert F.},
  title =	{{Proof Theory in Computer Science (Dagstuhl Seminar 01411)}},
  pages =	{1--18},
  ISSN =	{1619-0203},
  year =	{2002},
  type = 	{Dagstuhl Seminar Report},
  number =	{322},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemRep.322},
  URN =		{urn:nbn:de:0030-drops-152062},
  doi =		{10.4230/DagSemRep.322},
}
Document
Hierarchical Methods in Computer Graphics (Dagstuhl Seminar 98211)

Authors: Markus Gross, Heinrich Müller, Peter Schröder, and Hans-Peter Seidel

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

Markus Gross, Heinrich Müller, Peter Schröder, and Hans-Peter Seidel. Hierarchical Methods in Computer Graphics (Dagstuhl Seminar 98211). Dagstuhl Seminar Report 212, pp. 1-23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (1998)


Copy BibTex To Clipboard

@TechReport{gross_et_al:DagSemRep.212,
  author =	{Gross, Markus and M\"{u}ller, Heinrich and Schr\"{o}der, Peter and Seidel, Hans-Peter},
  title =	{{Hierarchical Methods in Computer Graphics (Dagstuhl Seminar 98211)}},
  pages =	{1--23},
  ISSN =	{1619-0203},
  year =	{1998},
  type = 	{Dagstuhl Seminar Report},
  number =	{212},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemRep.212},
  URN =		{urn:nbn:de:0030-drops-150983},
  doi =		{10.4230/DagSemRep.212},
}
  • Refine by Author
  • 5 Schröder-Preikschat, Wolfgang
  • 5 Wägemann, Peter
  • 4 Distler, Tobias
  • 3 Ulbrich, Peter
  • 2 Dietrich, Christian
  • Show More...

  • Refine by Classification
  • 2 Computer systems organization → Real-time systems
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Hardware → Power and energy
  • 1 Hardware → Static timing analysis

  • Refine by Keyword
  • 2 WCET
  • 2 energy-constrained real-time systems
  • 2 worst-case energy consumption (WCEC)
  • 2 worst-case response energy consumption (WCRE)
  • 1 Computable analysis
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 3 2018
  • 1 1998
  • 1 2002
  • 1 2009
  • 1 2015
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail