3 Search Results for "Schweller, Robert T."


Document
Optimal Staged Self-Assembly of General Shapes

Authors: Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim Wylie

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We analyze the number of stages, tiles, and bins needed to construct n * n squares and scaled shapes in the staged tile assembly model. In particular, we prove that there exists a staged system with b bins and t tile types assembling an n * n square using O((log n - tb - t log t)/b^2 + log log b/log t) stages and Omega((log n - tb - t log t)/b^2) are necessary for almost all n. For a shape S, we prove O((K(S) - tb - t log t)/b^2 + (log log b)/log t) stages suffice and Omega((K(S) - tb - t log t)/b^2) are necessary for the assembly of a scaled version of S, where K(S) denotes the Kolmogorov complexity of S. Similarly tight bounds are also obtained when more powerful flexible glue functions are permitted. These are the first staged results that hold for all choices of b and t and generalize prior results. The upper bound constructions use a new technique for efficiently converting each both sources of system complexity, namely the tile types and mixing graph, into a "bit string" assembly.

Cite as

Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim Wylie. Optimal Staged Self-Assembly of General Shapes. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chalk_et_al:LIPIcs.ESA.2016.26,
  author =	{Chalk, Cameron and Martinez, Eric and Schweller, Robert and Vega, Luis and Winslow, Andrew and Wylie, Tim},
  title =	{{Optimal Staged Self-Assembly of General Shapes}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.26},
  URN =		{urn:nbn:de:0030-drops-63776},
  doi =		{10.4230/LIPIcs.ESA.2016.26},
  annote =	{Keywords: Tile self-assembly, 2HAM, aTAM, DNA computing, biocomputing}
}
Document
Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM

Authors: Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller, Scott M Summers, and Andrew Winslow

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We study the difference between the standard seeded model (aTAM) of tile self-assembly, and the "seedless" two-handed model of tile self-assembly (2HAM). Most of our results suggest that the two-handed model is more powerful. In particular, we show how to simulate any seeded system with a two-handed system that is essentially just a constant factor larger. We exhibit finite shapes with a busy-beaver separation in the number of distinct tiles required by seeded versus two-handed, and exhibit an infinite shape that can be constructed two-handed but not seeded. Finally, we show that verifying whether a given system uniquely assembles a desired supertile is co-NP-complete in the two-handed model, while it was known to be polynomially solvable in the seeded model.

Cite as

Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 172-184, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{cannon_et_al:LIPIcs.STACS.2013.172,
  author =	{Cannon, Sarah and Demaine, Erik D. and Demaine, Martin L. and Eisenstat, Sarah and Patitz, Matthew J. and Schweller, Robert T. and Summers, Scott M and Winslow, Andrew},
  title =	{{Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{172--184},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.172},
  URN =		{urn:nbn:de:0030-drops-39321},
  doi =		{10.4230/LIPIcs.STACS.2013.172},
  annote =	{Keywords: abstract tile assembly model, hierarchical tile assembly model, two-handed tile assembly model, algorithmic self-assembly, DNA computing, biocomputing}
}
Document
Extended Abstract
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor (Extended Abstract)

Authors: Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers

Published in: LIPIcs, Volume 9, 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)


Abstract
We consider a model of algorithmic self-assembly of geometric shapes out of square Wang tiles studied in SODA 2010, in which there are two types of tiles (e.g., constructed out of DNA and RNA material) and one operation that destroys all tiles of a particular type (e.g., an RNAse enzyme destroys all RNA tiles). We show that a single use of this destruction operation enables much more efficient construction of arbitrary shapes. In particular, an arbitrary shape can be constructed using an asymptotically optimal number of distinct tile type (related to the shape's Kolmogorov complexity), after scaling the shape by only a logarithmic factor. By contrast, without the destruction operation, the best such result has a scale factor at least linear in the size of the shape and is connected only by a spanning tree of the scaled tiles. We also characterize a large collection of shapes that can be constructed efficiently without any scaling.

Cite as

Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor (Extended Abstract). In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 201-212, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.STACS.2011.201,
  author =	{Demaine, Erik D. and Patitz, Matthew J. and Schweller, Robert T. and Summers, Scott M.},
  title =	{{Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor}},
  booktitle =	{28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)},
  pages =	{201--212},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-25-5},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{9},
  editor =	{Schwentick, Thomas and D\"{u}rr, Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2011.201},
  URN =		{urn:nbn:de:0030-drops-30118},
  doi =		{10.4230/LIPIcs.STACS.2011.201},
  annote =	{Keywords: Biomolecular computation, RNAse enzyme self-assembly, algorithmic self-assembly, Komogorov complexity}
}
  • Refine by Author
  • 2 Demaine, Erik D.
  • 2 Patitz, Matthew J.
  • 2 Schweller, Robert T.
  • 2 Winslow, Andrew
  • 1 Cannon, Sarah
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 DNA computing
  • 2 algorithmic self-assembly
  • 2 biocomputing
  • 1 2HAM
  • 1 Biomolecular computation
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2011
  • 1 2013
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail