2 Search Results for "Shapira, Michael"


Document
From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)

Authors: Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A. Konstan, Pablo Castells, Elizabeth M. Daly, Thierry Declerck, Michael D. Ekstrand, Werner Geyer, Julio Gonzalo, Tsvi Kuflik, Krister Lindén, Bernardo Magnini, Jian-Yun Nie, Raffaele Perego, Bracha Shapira, Ian Soboroff, Nava Tintarev, Karin Verspoor, Martijn C. Willemsen, and Justin Zobel

Published in: Dagstuhl Manifestos, Volume 7, Issue 1 (2018)


Abstract
We describe the state-of-the-art in performance modeling and prediction for Information Retrieval (IR), Natural Language Processing (NLP) and Recommender Systems (RecSys) along with its shortcomings and strengths. We present a framework for further research, identifying five major problem areas: understanding measures, performance analysis, making underlying assumptions explicit, identifying application features determining performance, and the development of prediction models describing the relationship between assumptions, features and resulting performance.

Cite as

Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A. Konstan, Pablo Castells, Elizabeth M. Daly, Thierry Declerck, Michael D. Ekstrand, Werner Geyer, Julio Gonzalo, Tsvi Kuflik, Krister Lindén, Bernardo Magnini, Jian-Yun Nie, Raffaele Perego, Bracha Shapira, Ian Soboroff, Nava Tintarev, Karin Verspoor, Martijn C. Willemsen, and Justin Zobel. From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442). In Dagstuhl Manifestos, Volume 7, Issue 1, pp. 96-139, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{ferro_et_al:DagMan.7.1.96,
  author =	{Ferro, Nicola and Fuhr, Norbert and Grefenstette, Gregory and Konstan, Joseph A. and Castells, Pablo and Daly, Elizabeth M. and Declerck, Thierry and Ekstrand, Michael D. and Geyer, Werner and Gonzalo, Julio and Kuflik, Tsvi and Lind\'{e}n, Krister and Magnini, Bernardo and Nie, Jian-Yun and Perego, Raffaele and Shapira, Bracha and Soboroff, Ian and Tintarev, Nava and Verspoor, Karin and Willemsen, Martijn C. and Zobel, Justin},
  title =	{{From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)}},
  pages =	{96--139},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2018},
  volume =	{7},
  number =	{1},
  editor =	{Ferro, Nicola and Fuhr, Norbert and Grefenstette, Gregory and Konstan, Joseph A. and Castells, Pablo and Daly, Elizabeth M. and Declerck, Thierry and Ekstrand, Michael D. and Geyer, Werner and Gonzalo, Julio and Kuflik, Tsvi and Lind\'{e}n, Krister and Magnini, Bernardo and Nie, Jian-Yun and Perego, Raffaele and Shapira, Bracha and Soboroff, Ian and Tintarev, Nava and Verspoor, Karin and Willemsen, Martijn C. and Zobel, Justin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagMan.7.1.96},
  URN =		{urn:nbn:de:0030-drops-98987},
  doi =		{10.4230/DagMan.7.1.96},
  annote =	{Keywords: Information Systems, Formal models, Evaluation, Simulation, User Interaction}
}
Document
On the Resiliency of Randomized Routing Against Multiple Edge Failures

Authors: Marco Chiesa, Andrei Gurtov, Aleksander Madry, Slobodan Mitrovic, Ilya Nikolaevskiy, Michael Shapira, and Scott Shenker

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We study the Static-Routing-Resiliency problem, motivated by routing on the Internet: Given a graph G = (V,E), a unique destination vertex d, and an integer constant c > 0, does there exist a static and destination-based routing scheme such that the correct delivery of packets from any source s to the destination d is guaranteed so long as (1) no more than c edges fail and (2) there exists a physical path from s to d? We embark upon a study of this problem by relating the edge-connectivity of a graph, i.e., the minimum number of edges whose deletion partitions G, to its resiliency. Following the success of randomized routing algorithms in dealing with a variety of problems (e.g., Valiant load balancing in the network design problem), we embark upon a study of randomized routing algorithms for the Static-Routing-Resiliency problem. For any k-connected graph, we show a surprisingly simple randomized algorithm that has expected number of hops O(|V|k) if at most k-1 edges fail, which reduces to O(|V|) if only a fraction t of the links fail (where t < 1 is a constant). Furthermore, our algorithm is deterministic if the routing does not encounter any failed link.

Cite as

Marco Chiesa, Andrei Gurtov, Aleksander Madry, Slobodan Mitrovic, Ilya Nikolaevskiy, Michael Shapira, and Scott Shenker. On the Resiliency of Randomized Routing Against Multiple Edge Failures. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 134:1-134:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chiesa_et_al:LIPIcs.ICALP.2016.134,
  author =	{Chiesa, Marco and Gurtov, Andrei and Madry, Aleksander and Mitrovic, Slobodan and Nikolaevskiy, Ilya and Shapira, Michael and Shenker, Scott},
  title =	{{On the Resiliency of Randomized Routing Against Multiple Edge Failures}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{134:1--134:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.134},
  URN =		{urn:nbn:de:0030-drops-62692},
  doi =		{10.4230/LIPIcs.ICALP.2016.134},
  annote =	{Keywords: Randomized, Routing, Resilience, Connectivity, Arborescenses}
}
  • Refine by Author
  • 1 Castells, Pablo
  • 1 Chiesa, Marco
  • 1 Daly, Elizabeth M.
  • 1 Declerck, Thierry
  • 1 Ekstrand, Michael D.
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Arborescenses
  • 1 Connectivity
  • 1 Evaluation
  • 1 Formal models
  • 1 Information Systems
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2016
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail