31 Search Results for "Smith, Adam D."


Volume

LIPIcs, Volume 163

1st Conference on Information-Theoretic Cryptography (ITC 2020)

ITC 2020, June 17-19, 2020, Boston, MA, USA

Editors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs

Document
APPROX
On Complexity of 1-Center in Various Metrics

Authors: Amir Abboud, MohammadHossein Bateni, Vincent Cohen-Addad, Karthik C. S., and Saeed Seddighin

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We consider the classic 1-center problem: Given a set P of n points in a metric space find the point in P that minimizes the maximum distance to the other points of P. We study the complexity of this problem in d-dimensional 𝓁_p-metrics and in edit and Ulam metrics over strings of length d. Our results for the 1-center problem may be classified based on d as follows. - Small d. Assuming the hitting set conjecture (HSC), we show that when d = ω(log n), no subquadratic algorithm can solve the 1-center problem in any of the 𝓁_p-metrics, or in the edit or Ulam metrics. - Large d. When d = Ω(n), we extend our conditional lower bound to rule out subquartic algorithms for the 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a (1+ε)-approximation for 1-center in the Ulam metric with running time O_{ε}̃(nd+n²√d). We also strengthen some of the above lower bounds by allowing approximation algorithms or by reducing the dimension d, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of n strings each of length n, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.

Cite as

Amir Abboud, MohammadHossein Bateni, Vincent Cohen-Addad, Karthik C. S., and Saeed Seddighin. On Complexity of 1-Center in Various Metrics. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 1:1-1:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.APPROX/RANDOM.2023.1,
  author =	{Abboud, Amir and Bateni, MohammadHossein and Cohen-Addad, Vincent and Karthik C. S. and Seddighin, Saeed},
  title =	{{On Complexity of 1-Center in Various Metrics}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{1:1--1:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.1},
  URN =		{urn:nbn:de:0030-drops-188260},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.1},
  annote =	{Keywords: Center, Clustering, Edit metric, Ulam metric, Hamming metric, Fine-grained Complexity, Approximation}
}
Document
APPROX
Experimental Design for Any p-Norm

Authors: Lap Chi Lau, Robert Wang, and Hong Zhou

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We consider a general p-norm objective for experimental design problems that captures some well-studied objectives (D/A/E-design) as special cases. We prove that a randomized local search approach provides a unified algorithm to solve this problem for all nonnegative integer p. This provides the first approximation algorithm for the general p-norm objective, and a nice interpolation of the best known bounds of the special cases.

Cite as

Lap Chi Lau, Robert Wang, and Hong Zhou. Experimental Design for Any p-Norm. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lau_et_al:LIPIcs.APPROX/RANDOM.2023.4,
  author =	{Lau, Lap Chi and Wang, Robert and Zhou, Hong},
  title =	{{Experimental Design for Any p-Norm}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.4},
  URN =		{urn:nbn:de:0030-drops-188292},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.4},
  annote =	{Keywords: Approximation Algorithm, Optimal Experimental Design, Randomized Local Search}
}
Document
APPROX
Bicriteria Approximation Algorithms for Priority Matroid Median

Authors: Tanvi Bajpai and Chandra Chekuri

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Fairness considerations have motivated new clustering problems and algorithms in recent years. In this paper we consider the Priority Matroid Median problem which generalizes the Priority k-Median problem that has recently been studied. The input consists of a set of facilities ℱ and a set of clients 𝒞 that lie in a metric space (ℱ ∪ 𝒞,d), and a matroid ℳ = (ℱ,ℐ) over the facilities. In addition, each client j has a specified radius r_j ≥ 0 and each facility i ∈ ℱ has an opening cost f_i > 0. The goal is to choose a subset S ⊆ ℱ of facilities to minimize ∑_{i ∈ ℱ} f_i + ∑_{j ∈ 𝒞} d(j,S) subject to two constraints: (i) S is an independent set in ℳ (that is S ∈ ℐ) and (ii) for each client j, its distance to an open facility is at most r_j (that is, d(j,S) ≤ r_j). For this problem we describe the first bicriteria (c₁,c₂) approximations for fixed constants c₁,c₂: the radius constraints of the clients are violated by at most a factor of c₁ and the objective cost is at most c₂ times the optimum cost. We also improve the previously known bicriteria approximation for the uniform radius setting (r_j : = L ∀ j ∈ 𝒞).

Cite as

Tanvi Bajpai and Chandra Chekuri. Bicriteria Approximation Algorithms for Priority Matroid Median. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 7:1-7:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bajpai_et_al:LIPIcs.APPROX/RANDOM.2023.7,
  author =	{Bajpai, Tanvi and Chekuri, Chandra},
  title =	{{Bicriteria Approximation Algorithms for Priority Matroid Median}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{7:1--7:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.7},
  URN =		{urn:nbn:de:0030-drops-188328},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.7},
  annote =	{Keywords: k-median, fair clustering, matroid}
}
Document
APPROX
The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems

Authors: Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the question of when an approximate search optimization problem is harder than the associated decision problem. Specifically, we study a natural and quite general model of black-box search-to-decision reductions, which we call branch-and-bound reductions (in analogy with branch-and-bound algorithms). In this model, an algorithm attempts to minimize (or maximize) a function f: D → ℝ_{≥ 0} by making oracle queries to h_f : 𝒮 → ℝ_{≥ 0} satisfying min_{x ∈ S} f(x) ≤ h_f(S) ≤ γ ⋅ min_{x ∈ S} f(x) (*) for some γ ≥ 1 and any subset S in some allowed class of subsets 𝒮 of the domain D. (When the goal is to maximize f, h_f instead yields an approximation to the maximal value of f over S.) We show tight upper and lower bounds on the number of queries q needed to find even a γ'-approximate minimizer (or maximizer) for quite large γ' in a number of interesting settings, as follows. - For arbitrary functions f : {0,1}ⁿ → ℝ_{≥ 0}, where 𝒮 contains all subsets of the domain, we show that no branch-and-bound reduction can achieve γ' ≲ γ^{n/log q}, while a simple greedy approach achieves essentially γ^{n/log q}. - For a large class of MAX-CSPs, where 𝒮 := {S_w} contains each set of assignments to the variables induced by a partial assignment w, we show that no branch-and-bound reduction can do significantly better than essentially a random guess, even when the oracle h_f guarantees an approximation factor of γ ≈ 1+√{log(q)/n}. - For the Traveling Salesperson Problem (TSP), where 𝒮 := {S_p} contains each set of tours extending a path p, we show that no branch-and-bound reduction can achieve γ' ≲ (γ-1) n/log q. We also prove a nearly matching upper bound in our model. These results show an oracle model in which approximate search and decision are strongly separated. (In particular, our result for TSP can be viewed as a negative answer to a question posed by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We also note two alternative interpretations of our results. First, if we view h_f as a data structure, then our results unconditionally rule out black-box search-to-decision reductions for certain data structure problems. Second, if we view h_f as an efficiently computable heuristic, then our results show that any reasonably efficient branch-and-bound algorithm requires more guarantees from its heuristic than simply Eq. (*). Behind our results is a "useless oracle lemma," which allows us to argue that under certain conditions the oracle h_f is "useless," and which might be of independent interest. See also the full version [Alexander Golovnev et al., 2022].

Cite as

Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz. The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX/RANDOM.2023.10,
  author =	{Golovnev, Alexander and Guo, Siyao and Peters, Spencer and Stephens-Davidowitz, Noah},
  title =	{{The (Im)possibility of Simple Search-To-Decision Reductions for Approximation Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.10},
  URN =		{urn:nbn:de:0030-drops-188351},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.10},
  annote =	{Keywords: search-to-decision reductions, oracles, constraint satisfaction, traveling salesman, discrete optimization}
}
Document
APPROX
Oblivious Algorithms for the Max-kAND Problem

Authors: Noah G. Singer

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Motivated by recent works on streaming algorithms for constraint satisfaction problems (CSPs), we define and analyze oblivious algorithms for the Max-kAND problem. This is a class of simple, combinatorial algorithms which round each variable with probability depending only on a quantity called the variable’s bias. Our definition generalizes a class of algorithms defined by Feige and Jozeph (Algorithmica '15) for Max-DICUT, a special case of Max-2AND. For each oblivious algorithm, we design a so-called factor-revealing linear program (LP) which captures its worst-case instance, generalizing one of Feige and Jozeph for Max-DICUT. Then, departing from their work, we perform a fully explicit analysis of these (infinitely many!) LPs. In particular, we show that for all k, oblivious algorithms for Max-kAND provably outperform a special subclass of algorithms we call "superoblivious" algorithms. Our result has implications for streaming algorithms: Generalizing the result for Max-DICUT of Saxena, Singer, Sudan, and Velusamy (SODA'23), we prove that certain separation results hold between streaming models for infinitely many CSPs: for every k, O(log n)-space sketching algorithms for Max-kAND known to be optimal in o(√n)-space can be beaten in (a) O(log n)-space under a random-ordering assumption, and (b) O(n^{1-1/k} D^{1/k}) space under a maximum-degree-D assumption. Even in the previously-known case of Max-DICUT, our analytic proof gives a fuller, computer-free picture of these separation results.

Cite as

Noah G. Singer. Oblivious Algorithms for the Max-kAND Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{singer:LIPIcs.APPROX/RANDOM.2023.15,
  author =	{Singer, Noah G.},
  title =	{{Oblivious Algorithms for the Max-kAND Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.15},
  URN =		{urn:nbn:de:0030-drops-188409},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.15},
  annote =	{Keywords: streaming algorithm, approximation algorithm, constraint satisfaction problem (CSP), factor-revealing linear program}
}
Document
APPROX
An Approximation Algorithm for the Exact Matching Problem in Bipartite Graphs

Authors: Anita Dürr, Nicolas El Maalouly, and Lasse Wulf

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In 1982 Papadimitriou and Yannakakis introduced the Exact Matching problem, in which given a red and blue edge-colored graph G and an integer k one has to decide whether there exists a perfect matching in G with exactly k red edges. Even though a randomized polynomial-time algorithm for this problem was quickly found a few years later, it is still unknown today whether a deterministic polynomial-time algorithm exists. This makes the Exact Matching problem an important candidate to test the RP=P hypothesis. In this paper we focus on approximating Exact Matching. While there exists a simple algorithm that computes in deterministic polynomial-time an almost perfect matching with exactly k red edges, not a lot of work focuses on computing perfect matchings with almost k red edges. In fact such an algorithm for bipartite graphs running in deterministic polynomial-time was published only recently (STACS'23). It outputs a perfect matching with k' red edges with the guarantee that 0.5k ≤ k' ≤ 1.5k. In the present paper we aim at approximating the number of red edges without exceeding the limit of k red edges. We construct a deterministic polynomial-time algorithm, which on bipartite graphs computes a perfect matching with k' red edges such that k/3 ≤ k' ≤ k.

Cite as

Anita Dürr, Nicolas El Maalouly, and Lasse Wulf. An Approximation Algorithm for the Exact Matching Problem in Bipartite Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 18:1-18:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{durr_et_al:LIPIcs.APPROX/RANDOM.2023.18,
  author =	{D\"{u}rr, Anita and El Maalouly, Nicolas and Wulf, Lasse},
  title =	{{An Approximation Algorithm for the Exact Matching Problem in Bipartite Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{18:1--18:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.18},
  URN =		{urn:nbn:de:0030-drops-188436},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.18},
  annote =	{Keywords: Perfect Matching, Exact Matching, Red-Blue Matching, Approximation Algorithms, Bounded Color Matching}
}
Document
APPROX
Stable Approximation Algorithms for Dominating Set and Independent Set

Authors: Mark de Berg, Arpan Sadhukhan, and Frits Spieksma

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study Dominating Set and Independent Set for dynamic graphs in the vertex-arrival model. We say that a dynamic algorithm for one of these problems is k-stable when it makes at most k changes to its output independent set or dominating set upon the arrival of each vertex. We study trade-offs between the stability parameter k of the algorithm and the approximation ratio it achieves. We obtain the following results. - We show that there is a constant ε^* > 0 such that any dynamic (1+ε^*)-approximation algorithm for Dominating Set has stability parameter Ω(n), even for bipartite graphs of maximum degree 4. - We present algorithms with very small stability parameters for Dominating Set in the setting where the arrival degree of each vertex is upper bounded by d. In particular, we give a 1-stable (d+1)²-approximation, and a 3-stable (9d/2)-approximation algorithm. - We show that there is a constant ε^* > 0 such that any dynamic (1+ε^*)-approximation algorithm for Independent Set has stability parameter Ω(n), even for bipartite graphs of maximum degree 3. - Finally, we present a 2-stable O(d)-approximation algorithm for Independent Set, in the setting where the average degree of the graph is upper bounded by some constant d at all times.

Cite as

Mark de Berg, Arpan Sadhukhan, and Frits Spieksma. Stable Approximation Algorithms for Dominating Set and Independent Set. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.APPROX/RANDOM.2023.27,
  author =	{de Berg, Mark and Sadhukhan, Arpan and Spieksma, Frits},
  title =	{{Stable Approximation Algorithms for Dominating Set and Independent Set}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.27},
  URN =		{urn:nbn:de:0030-drops-188527},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.27},
  annote =	{Keywords: Dynamic algorithms, approximation algorithms, stability, dominating set, independent set}
}
Document
RANDOM
Sampling and Certifying Symmetric Functions

Authors: Yuval Filmus, Itai Leigh, Artur Riazanov, and Dmitry Sokolov

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
A circuit 𝒞 samples a distribution X with an error ε if the statistical distance between the output of 𝒞 on the uniform input and X is ε. We study the hardness of sampling a uniform distribution over the set of n-bit strings of Hamming weight k denoted by Uⁿ_k for decision forests, i.e. every output bit is computed as a decision tree of the inputs. For every k there is an O(log n)-depth decision forest sampling Uⁿ_k with an inverse-polynomial error [Emanuele Viola, 2012; Czumaj, 2015]. We show that for every ε > 0 there exists τ such that for decision depth τ log (n/k) / log log (n/k), the error for sampling U_kⁿ is at least 1-ε. Our result is based on the recent robust sunflower lemma [Ryan Alweiss et al., 2021; Rao, 2019]. Our second result is about matching a set of n-bit strings with the image of a d-local circuit, i.e. such that each output bit depends on at most d input bits. We study the set of all n-bit strings whose Hamming weight is at least n/2. We improve the previously known locality lower bound from Ω(log^* n) [Beyersdorff et al., 2013] to Ω(√log n), leaving only a quartic gap from the best upper bound of O(log² n).

Cite as

Yuval Filmus, Itai Leigh, Artur Riazanov, and Dmitry Sokolov. Sampling and Certifying Symmetric Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{filmus_et_al:LIPIcs.APPROX/RANDOM.2023.36,
  author =	{Filmus, Yuval and Leigh, Itai and Riazanov, Artur and Sokolov, Dmitry},
  title =	{{Sampling and Certifying Symmetric Functions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{36:1--36:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.36},
  URN =		{urn:nbn:de:0030-drops-188611},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.36},
  annote =	{Keywords: sampling, lower bounds, robust sunflowers, decision trees, switching networks}
}
Document
RANDOM
Perfect Sampling for Hard Spheres from Strong Spatial Mixing

Authors: Konrad Anand, Andreas Göbel, Marcus Pappik, and Will Perkins

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We provide a perfect sampling algorithm for the hard-sphere model on subsets of R^d with expected running time linear in the volume under the assumption of strong spatial mixing. A large number of perfect and approximate sampling algorithms have been devised to sample from the hard-sphere model, and our perfect sampling algorithm is efficient for a range of parameters for which only efficient approximate samplers were previously known and is faster than these known approximate approaches. Our methods also extend to the more general setting of Gibbs point processes interacting via finite-range, repulsive potentials.

Cite as

Konrad Anand, Andreas Göbel, Marcus Pappik, and Will Perkins. Perfect Sampling for Hard Spheres from Strong Spatial Mixing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.APPROX/RANDOM.2023.38,
  author =	{Anand, Konrad and G\"{o}bel, Andreas and Pappik, Marcus and Perkins, Will},
  title =	{{Perfect Sampling for Hard Spheres from Strong Spatial Mixing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.38},
  URN =		{urn:nbn:de:0030-drops-188638},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.38},
  annote =	{Keywords: perfect sampling, hard-sphere model, Gibbs point processes}
}
Document
RANDOM
Low-Degree Testing over Grids

Authors: Prashanth Amireddy, Srikanth Srinivasan, and Madhu Sudan

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the question of local testability of low (constant) degree functions from a product domain 𝒮_1 × … × 𝒮_n to a field 𝔽, where 𝒮_i ⊆ 𝔽 can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if 𝒮_i = 𝒮 for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether f has a polynomial representation of degree at most d or is Ω(1)-far from having this property. In contrast, we show that there exist asymmetric grids with |𝒮_1| = ⋯ = |𝒮_n| = 3 for which testing requires ω_n(1) queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function f:𝒮_1 × ⋯ × 𝒮_n → 𝒢, for an abelian group 𝒢 is said to be a junta-degree-d function if it is a sum of d-juntas. We derive our low-degree test by giving a new local test for junta-degree-d functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical/hamming noise over large grids, which may be of independent interest.

Cite as

Prashanth Amireddy, Srikanth Srinivasan, and Madhu Sudan. Low-Degree Testing over Grids. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 41:1-41:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.APPROX/RANDOM.2023.41,
  author =	{Amireddy, Prashanth and Srinivasan, Srikanth and Sudan, Madhu},
  title =	{{Low-Degree Testing over Grids}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{41:1--41:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.41},
  URN =		{urn:nbn:de:0030-drops-188665},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.41},
  annote =	{Keywords: Property testing, Low-degree testing, Small-set expansion, Local testing}
}
Document
RANDOM
Efficient Interactive Proofs for Non-Deterministic Bounded Space

Authors: Joshua Cook and Ron D. Rothblum

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time Õ(n+S²). This improves on the best previous bound of Õ(n+S³) and matches the result for deterministic space bounded algorithms, up to polylog(S) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T, space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time Õ(n + S log(T) + S d) and the prover runs in time 2^O(S). For d = O(log(T)), this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T). We also improve the best prior verifier time for unbounded alternations by a factor of S. Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in.

Cite as

Joshua Cook and Ron D. Rothblum. Efficient Interactive Proofs for Non-Deterministic Bounded Space. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 47:1-47:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cook_et_al:LIPIcs.APPROX/RANDOM.2023.47,
  author =	{Cook, Joshua and Rothblum, Ron D.},
  title =	{{Efficient Interactive Proofs for Non-Deterministic Bounded Space}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{47:1--47:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.47},
  URN =		{urn:nbn:de:0030-drops-188727},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.47},
  annote =	{Keywords: Interactive Proofs, Alternating Algorithms, AC0\lbrack2\rbrack, Doubly Efficient Proofs}
}
Document
RANDOM
Directed Poincaré Inequalities and L¹ Monotonicity Testing of Lipschitz Functions

Authors: Renato Ferreira Pinto Jr.

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the connection between directed isoperimetric inequalities and monotonicity testing. In recent years, this connection has unlocked breakthroughs for testing monotonicity of functions defined on discrete domains. Inspired the rich history of isoperimetric inequalities in continuous settings, we propose that studying the relationship between directed isoperimetry and monotonicity in such settings is essential for understanding the full scope of this connection. Hence, we ask whether directed isoperimetric inequalities hold for functions f:[0,1]ⁿ → R, and whether this question has implications for monotonicity testing. We answer both questions affirmatively. For Lipschitz functions f:[0,1]ⁿ → ℝ, we show the inequality d^mono₁(f) ≲ 𝔼 [‖∇^- f‖₁], which upper bounds the L¹ distance to monotonicity of f by a measure of its "directed gradient". A key ingredient in our proof is the monotone rearrangement of f, which generalizes the classical "sorting operator" to continuous settings. We use this inequality to give an L¹ monotonicity tester for Lipschitz functions f:[0,1]ⁿ → ℝ, and this framework also implies similar results for testing real-valued functions on the hypergrid.

Cite as

Renato Ferreira Pinto Jr.. Directed Poincaré Inequalities and L¹ Monotonicity Testing of Lipschitz Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 61:1-61:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ferreirapintojr.:LIPIcs.APPROX/RANDOM.2023.61,
  author =	{Ferreira Pinto Jr., Renato},
  title =	{{Directed Poincar\'{e} Inequalities and L¹ Monotonicity Testing of Lipschitz Functions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{61:1--61:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.61},
  URN =		{urn:nbn:de:0030-drops-188867},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.61},
  annote =	{Keywords: Monotonicity testing, property testing, isoperimetric inequalities, Poincar\'{e} inequalities}
}
Document
Complete Volume
LIPIcs, Volume 163, ITC 2020, Complete Volume

Authors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs

Published in: LIPIcs, Volume 163, 1st Conference on Information-Theoretic Cryptography (ITC 2020)


Abstract
LIPIcs, Volume 163, ITC 2020, Complete Volume

Cite as

1st Conference on Information-Theoretic Cryptography (ITC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 163, pp. 1-352, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{taumankalai_et_al:LIPIcs.ITC.2020,
  title =	{{LIPIcs, Volume 163, ITC 2020, Complete Volume}},
  booktitle =	{1st Conference on Information-Theoretic Cryptography (ITC 2020)},
  pages =	{1--352},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-151-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{163},
  editor =	{Tauman Kalai, Yael and Smith, Adam D. and Wichs, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2020},
  URN =		{urn:nbn:de:0030-drops-121048},
  doi =		{10.4230/LIPIcs.ITC.2020},
  annote =	{Keywords: LIPIcs, Volume 163, ITC 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs

Published in: LIPIcs, Volume 163, 1st Conference on Information-Theoretic Cryptography (ITC 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

1st Conference on Information-Theoretic Cryptography (ITC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 163, pp. 0:i-0:xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{taumankalai_et_al:LIPIcs.ITC.2020.0,
  author =	{Tauman Kalai, Yael and Smith, Adam D. and Wichs, Daniel},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{1st Conference on Information-Theoretic Cryptography (ITC 2020)},
  pages =	{0:i--0:xiv},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-151-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{163},
  editor =	{Tauman Kalai, Yael and Smith, Adam D. and Wichs, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2020.0},
  URN =		{urn:nbn:de:0030-drops-121057},
  doi =		{10.4230/LIPIcs.ITC.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
  • Refine by Author
  • 2 Segev, Gil
  • 2 Smith, Adam D.
  • 2 Tauman Kalai, Yael
  • 2 Wichs, Daniel
  • 1 Abboud, Amir
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Cryptographic primitives
  • 4 Security and privacy → Cryptography
  • 4 Security and privacy → Information-theoretic techniques
  • 3 Security and privacy → Privacy-preserving protocols
  • 3 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 2 Interactive Proofs
  • 2 Secret sharing scheme
  • 2 lower bounds
  • 1 3-COLorability
  • 1 AC0[2]
  • Show More...

  • Refine by Type
  • 30 document
  • 1 volume

  • Refine by Publication Year
  • 19 2020
  • 12 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail