2 Search Results for "Statman, Richard"


Document
Higher-Order Quantified Boolean Satisfiability

Authors: Dmitry Chistikov, Christoph Haase, Zahra Hadizadeh, and Alessio Mansutti

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The Boolean satisfiability problem plays a central role in computational complexity and is often used as a starting point for showing NP lower bounds. Generalisations such as Succinct SAT, where a Boolean formula is succinctly represented as a Boolean circuit, have been studied in the literature in order to lift the Boolean satisfiability problem to higher complexity classes such as NEXP. While, in theory, iterating this approach yields complete problems for k-NEXP for all k > 0, using such iterations of Succinct SAT is at best tedious when it comes to proving lower bounds. The main contribution of this paper is to show that the Boolean satisfiability problem has another canonical generalisation in terms of higher-order Boolean functions that is arguably more suitable for showing lower bounds beyond NP. We introduce a family of problems HOSAT(k,d), k ≥ 0, d ≥ 1, in which variables are interpreted as Boolean functions of order at most k and there are d quantifier alternations between functions of order exactly k. We show that the unbounded HOSAT problem is TOWER-complete, and that HOSAT(k,d) is complete for the weak k-EXP hierarchy with d alternations for fixed k,d ≥ 1 and d odd. We illustrate the usefulness of HOSAT by characterising the complexity of weak Presburger arithmetic, the first-order theory of the integers with addition and equality but without order. It has been a long-standing open problem whether weak Presburger arithmetic has the same complexity as standard Presburger arithmetic. We answer this question affirmatively, even for the negation-free fragment and the Horn fragment of weak Presburger arithmetic.

Cite as

Dmitry Chistikov, Christoph Haase, Zahra Hadizadeh, and Alessio Mansutti. Higher-Order Quantified Boolean Satisfiability. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.MFCS.2022.33,
  author =	{Chistikov, Dmitry and Haase, Christoph and Hadizadeh, Zahra and Mansutti, Alessio},
  title =	{{Higher-Order Quantified Boolean Satisfiability}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.33},
  URN =		{urn:nbn:de:0030-drops-168313},
  doi =		{10.4230/LIPIcs.MFCS.2022.33},
  annote =	{Keywords: Boolean satisfiability problem, higher-order Boolean functions, weak k-EXP hierarchies, non-elementary complexity, Presburger arithmetic}
}
Document
The Completeness of BCD for an Operational Semantics

Authors: Richard Statman

Published in: LIPIcs, Volume 97, 22nd International Conference on Types for Proofs and Programs (TYPES 2016)


Abstract
We give a completeness theorem for the BCD theory of intersection types in an operational semantics based on logical relations.

Cite as

Richard Statman. The Completeness of BCD for an Operational Semantics. In 22nd International Conference on Types for Proofs and Programs (TYPES 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 97, pp. 15:1-15:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{statman:LIPIcs.TYPES.2016.15,
  author =	{Statman, Richard},
  title =	{{The Completeness of BCD for an Operational Semantics}},
  booktitle =	{22nd International Conference on Types for Proofs and Programs (TYPES 2016)},
  pages =	{15:1--15:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-065-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{97},
  editor =	{Ghilezan, Silvia and Geuvers, Herman and Ivetic, Jelena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2016.15},
  URN =		{urn:nbn:de:0030-drops-98478},
  doi =		{10.4230/LIPIcs.TYPES.2016.15},
  annote =	{Keywords: intersection types, operational semantics, Beth model, logical relations, forcing}
}
  • Refine by Author
  • 1 Chistikov, Dmitry
  • 1 Haase, Christoph
  • 1 Hadizadeh, Zahra
  • 1 Mansutti, Alessio
  • 1 Statman, Richard

  • Refine by Classification
  • 1 Theory of computation → Logic

  • Refine by Keyword
  • 1 Beth model
  • 1 Boolean satisfiability problem
  • 1 Presburger arithmetic
  • 1 forcing
  • 1 higher-order Boolean functions
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail