5 Search Results for "Stay, Michael A."


Document
Fast and Stable Repartitioning of Road Networks

Authors: Valentin Buchhold, Daniel Delling, Dennis Schieferdecker, and Michael Wegner

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
We study the problem of graph partitioning for evolving road networks. While the road network of the world is mostly stable, small updates happen on a relatively frequent basis, as can been observed with the OpenStreetMap project (http://www.openstreetmap.org). For various reasons, professional applications demand the graph partition to stay roughly the same over time, and that changes are limited to areas where graph updates occur. In this work, we define the problem, present algorithms to satisfy the stability needs, and evaluate our techniques on continental-sized road networks. Besides the stability gains, we show that, when the changes are low and local, running our novel techniques is an order of magnitude faster than running graph partitioning from scratch.

Cite as

Valentin Buchhold, Daniel Delling, Dennis Schieferdecker, and Michael Wegner. Fast and Stable Repartitioning of Road Networks. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{buchhold_et_al:LIPIcs.SEA.2020.26,
  author =	{Buchhold, Valentin and Delling, Daniel and Schieferdecker, Dennis and Wegner, Michael},
  title =	{{Fast and Stable Repartitioning of Road Networks}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.26},
  URN =		{urn:nbn:de:0030-drops-121000},
  doi =		{10.4230/LIPIcs.SEA.2020.26},
  annote =	{Keywords: Graph repartitioning, stable partitions, road networks, algorithm engineering}
}
Document
Polyharmonic Functions And Random Processes in Cones

Authors: François Chapon, Éric Fusy, and Kilian Raschel

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
We investigate polyharmonic functions associated to Brownian motions and random walks in cones. These are functions which cancel some power of the usual Laplacian in the continuous setting and of the discrete Laplacian in the discrete setting. We show that polyharmonic functions naturally appear while considering asymptotic expansions of the heat kernel in the Brownian case and in lattice walk enumeration problems. We provide a method to construct general polyharmonic functions through Laplace transforms and generating functions in the continuous and discrete cases, respectively. This is done by using a functional equation approach.

Cite as

François Chapon, Éric Fusy, and Kilian Raschel. Polyharmonic Functions And Random Processes in Cones. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chapon_et_al:LIPIcs.AofA.2020.9,
  author =	{Chapon, Fran\c{c}ois and Fusy, \'{E}ric and Raschel, Kilian},
  title =	{{Polyharmonic Functions And Random Processes in Cones}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.9},
  URN =		{urn:nbn:de:0030-drops-120390},
  doi =		{10.4230/LIPIcs.AofA.2020.9},
  annote =	{Keywords: Brownian motion in cones, Heat kernel, Random walks in cones, Harmonic functions, Polyharmonic functions, Complete asymptotic expansions, Functional equations}
}
Document
Connectivity of Triangulation Flip Graphs in the Plane (Part II: Bistellar Flips)

Authors: Uli Wagner and Emo Welzl

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Given a finite point set P in general position in the plane, a full triangulation is a maximal straight-line embedded plane graph on P. A partial triangulation on P is a full triangulation of some subset P' of P containing all extreme points in P. A bistellar flip on a partial triangulation either flips an edge, removes a non-extreme point of degree 3, or adds a point in P ⧵ P' as vertex of degree 3. The bistellar flip graph has all partial triangulations as vertices, and a pair of partial triangulations is adjacent if they can be obtained from one another by a bistellar flip. The goal of this paper is to investigate the structure of this graph, with emphasis on its connectivity. For sets P of n points in general position, we show that the bistellar flip graph is (n-3)-connected, thereby answering, for sets in general position, an open questions raised in a book (by De Loera, Rambau, and Santos) and a survey (by Lee and Santos) on triangulations. This matches the situation for the subfamily of regular triangulations (i.e., partial triangulations obtained by lifting the points and projecting the lower convex hull), where (n-3)-connectivity has been known since the late 1980s through the secondary polytope (Gelfand, Kapranov, Zelevinsky) and Balinski’s Theorem. Our methods also yield the following results (see the full version [Wagner and Welzl, 2020]): (i) The bistellar flip graph can be covered by graphs of polytopes of dimension n-3 (products of secondary polytopes). (ii) A partial triangulation is regular, if it has distance n-3 in the Hasse diagram of the partial order of partial subdivisions from the trivial subdivision. (iii) All partial triangulations are regular iff the trivial subdivision has height n-3 in the partial order of partial subdivisions. (iv) There are arbitrarily large sets P with non-regular partial triangulations, while every proper subset has only regular triangulations, i.e., there are no small certificates for the existence of non-regular partial triangulations (answering a question by F. Santos in the unexpected direction).

Cite as

Uli Wagner and Emo Welzl. Connectivity of Triangulation Flip Graphs in the Plane (Part II: Bistellar Flips). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 67:1-67:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{wagner_et_al:LIPIcs.SoCG.2020.67,
  author =	{Wagner, Uli and Welzl, Emo},
  title =	{{Connectivity of Triangulation Flip Graphs in the Plane (Part II: Bistellar Flips)}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{67:1--67:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.67},
  URN =		{urn:nbn:de:0030-drops-122259},
  doi =		{10.4230/LIPIcs.SoCG.2020.67},
  annote =	{Keywords: triangulation, flip graph, graph connectivity, associahedron, subdivision, convex decomposition, flippable edge, flip complex, regular triangulation, bistellar flip graph, secondary polytope, polyhedral subdivision}
}
Document
Automatic Analysis of Expected Termination Time for Population Protocols

Authors: Michael Blondin, Javier Esparza, and Antonín Kucera

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
Population protocols are a formal model of sensor networks consisting of identical mobile devices. Two devices can interact and thereby change their states. Computations are infinite sequences of interactions in which the interacting devices are chosen uniformly at random. In well designed population protocols, for every initial configuration of devices, and for every computation starting at this configuration, all devices eventually agree on a consensus value. We address the problem of automatically computing a parametric bound on the expected time the protocol needs to reach this consensus. We present the first algorithm that, when successful, outputs a function f(n) such that the expected time to consensus is bound by O(f(n)), where n is the number of devices executing the protocol. We experimentally show that our algorithm terminates and provides good bounds for many of the protocols found in the literature.

Cite as

Michael Blondin, Javier Esparza, and Antonín Kucera. Automatic Analysis of Expected Termination Time for Population Protocols. In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{blondin_et_al:LIPIcs.CONCUR.2018.33,
  author =	{Blondin, Michael and Esparza, Javier and Kucera, Anton{\'\i}n},
  title =	{{Automatic Analysis of Expected Termination Time for Population Protocols}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.33},
  URN =		{urn:nbn:de:0030-drops-95711},
  doi =		{10.4230/LIPIcs.CONCUR.2018.33},
  annote =	{Keywords: population protocols, performance analysis, expected termination time}
}
Document
Natural Halting Probabilities, Partial Randomness, and Zeta Functions

Authors: Christian S. Calude and Michael A. Stay

Published in: Dagstuhl Seminar Proceedings, Volume 6051, Kolmogorov Complexity and Applications (2006)


Abstract
We introduce the {it natural halting probability} and the {it natural complexity} of a Turing machine and we relate them to program-size complexity and Chaitin's halting probability. A classification of Turing machines according to their natural (Omega) halting probabilities is proposed: divergent, convergent and tuatara. We prove the existence of universal convergent and tuatara machines. Various results on randomness and partial randomness are proved. For example, we show that the natural halting probability of a universal tuatara machine is c.e. and random. A new type of partial randomness, asymptotic randomness, is introduced. Finally we show that in contrast to classical (algorithmic) randomness---which cannot be characterised in terms of plain complexity---various types of partial randomness admit such characterisations.

Cite as

Christian S. Calude and Michael A. Stay. Natural Halting Probabilities, Partial Randomness, and Zeta Functions. In Kolmogorov Complexity and Applications. Dagstuhl Seminar Proceedings, Volume 6051, p. 1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{calude_et_al:DagSemProc.06051.10,
  author =	{Calude, Christian S. and Stay, Michael A.},
  title =	{{Natural Halting Probabilities, Partial Randomness, and Zeta Functions}},
  booktitle =	{Kolmogorov Complexity and Applications},
  pages =	{1--1},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6051},
  editor =	{Marcus Hutter and Wolfgang Merkle and Paul M.B. Vitanyi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06051.10},
  URN =		{urn:nbn:de:0030-drops-6319},
  doi =		{10.4230/DagSemProc.06051.10},
  annote =	{Keywords: Natural halting probability, natural complexity}
}
  • Refine by Author
  • 1 Blondin, Michael
  • 1 Buchhold, Valentin
  • 1 Calude, Christian S.
  • 1 Chapon, François
  • 1 Delling, Daniel
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Enumeration
  • 1 Mathematics of computing → Generating functions
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Markov processes
  • 1 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 1 Brownian motion in cones
  • 1 Complete asymptotic expansions
  • 1 Functional equations
  • 1 Graph repartitioning
  • 1 Harmonic functions
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 3 2020
  • 1 2006
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail