6 Search Results for "Tóth, Géza"


Document
On Helly Numbers of Exponential Lattices

Authors: Gergely Ambrus, Martin Balko, Nóra Frankl, Attila Jung, and Márton Naszódi

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Given a set S ⊆ ℝ², define the Helly number of S, denoted by H(S), as the smallest positive integer N, if it exists, for which the following statement is true: for any finite family ℱ of convex sets in ℝ² such that the intersection of any N or fewer members of ℱ contains at least one point of S, there is a point of S common to all members of ℱ. We prove that the Helly numbers of exponential lattices {αⁿ : n ∈ ℕ₀}² are finite for every α > 1 and we determine their exact values in some instances. In particular, we obtain H({2ⁿ : n ∈ ℕ₀}²) = 5, solving a problem posed by Dillon (2021). For real numbers α, β > 1, we also fully characterize exponential lattices L(α,β) = {αⁿ : n ∈ ℕ₀} × {βⁿ : n ∈ ℕ₀} with finite Helly numbers by showing that H(L(α,β)) is finite if and only if log_α(β) is rational.

Cite as

Gergely Ambrus, Martin Balko, Nóra Frankl, Attila Jung, and Márton Naszódi. On Helly Numbers of Exponential Lattices. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ambrus_et_al:LIPIcs.SoCG.2023.8,
  author =	{Ambrus, Gergely and Balko, Martin and Frankl, N\'{o}ra and Jung, Attila and Nasz\'{o}di, M\'{a}rton},
  title =	{{On Helly Numbers of Exponential Lattices}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.8},
  URN =		{urn:nbn:de:0030-drops-178584},
  doi =		{10.4230/LIPIcs.SoCG.2023.8},
  annote =	{Keywords: Helly numbers, exponential lattices, Diophantine approximation}
}
Document
Disjointness Graphs of Short Polygonal Chains

Authors: János Pach, Gábor Tardos, and Géza Tóth

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
The disjointness graph of a set system is a graph whose vertices are the sets, two being connected by an edge if and only if they are disjoint. It is known that the disjointness graph G of any system of segments in the plane is χ-bounded, that is, its chromatic number χ(G) is upper bounded by a function of its clique number ω(G). Here we show that this statement does not remain true for systems of polygonal chains of length 2. We also construct systems of polygonal chains of length 3 such that their disjointness graphs have arbitrarily large girth and chromatic number. In the opposite direction, we show that the class of disjointness graphs of (possibly self-intersecting) 2-way infinite polygonal chains of length 3 is χ-bounded: for every such graph G, we have χ(G) ≤ (ω(G))³+ω(G).

Cite as

János Pach, Gábor Tardos, and Géza Tóth. Disjointness Graphs of Short Polygonal Chains. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 56:1-56:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{pach_et_al:LIPIcs.SoCG.2022.56,
  author =	{Pach, J\'{a}nos and Tardos, G\'{a}bor and T\'{o}th, G\'{e}za},
  title =	{{Disjointness Graphs of Short Polygonal Chains}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{56:1--56:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.56},
  URN =		{urn:nbn:de:0030-drops-160645},
  doi =		{10.4230/LIPIcs.SoCG.2022.56},
  annote =	{Keywords: chi-bounded, disjointness graph}
}
Document
Radon Numbers Grow Linearly

Authors: Dömötör Pálvölgyi

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Define the k-th Radon number r_k of a convexity space as the smallest number (if it exists) for which any set of r_k points can be partitioned into k parts whose convex hulls intersect. Combining the recent abstract fractional Helly theorem of Holmsen and Lee with earlier methods of Bukh, we prove that r_k grows linearly, i.e., r_k ≤ c(r₂)⋅ k.

Cite as

Dömötör Pálvölgyi. Radon Numbers Grow Linearly. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 60:1-60:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{palvolgyi:LIPIcs.SoCG.2020.60,
  author =	{P\'{a}lv\"{o}lgyi, D\"{o}m\"{o}t\"{o}r},
  title =	{{Radon Numbers Grow Linearly}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{60:1--60:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.60},
  URN =		{urn:nbn:de:0030-drops-122183},
  doi =		{10.4230/LIPIcs.SoCG.2020.60},
  annote =	{Keywords: discrete geometry, convexity space, Radon number}
}
Document
On the Chromatic Number of Disjointness Graphs of Curves

Authors: János Pach and István Tomon

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
Let omega(G) and chi(G) denote the clique number and chromatic number of a graph G, respectively. The disjointness graph of a family of curves (continuous arcs in the plane) is the graph whose vertices correspond to the curves and in which two vertices are joined by an edge if and only if the corresponding curves are disjoint. A curve is called x-monotone if every vertical line intersects it in at most one point. An x-monotone curve is grounded if its left endpoint lies on the y-axis. We prove that if G is the disjointness graph of a family of grounded x-monotone curves such that omega(G)=k, then chi(G)<= binom{k+1}{2}. If we only require that every curve is x-monotone and intersects the y-axis, then we have chi(G)<= k+1/2 binom{k+2}{3}. Both of these bounds are best possible. The construction showing the tightness of the last result settles a 25 years old problem: it yields that there exist K_k-free disjointness graphs of x-monotone curves such that any proper coloring of them uses at least Omega(k^{4}) colors. This matches the upper bound up to a constant factor.

Cite as

János Pach and István Tomon. On the Chromatic Number of Disjointness Graphs of Curves. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 54:1-54:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{pach_et_al:LIPIcs.SoCG.2019.54,
  author =	{Pach, J\'{a}nos and Tomon, Istv\'{a}n},
  title =	{{On the Chromatic Number of Disjointness Graphs of Curves}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{54:1--54:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.54},
  URN =		{urn:nbn:de:0030-drops-104582},
  doi =		{10.4230/LIPIcs.SoCG.2019.54},
  annote =	{Keywords: string graph, chromatic number, intersection graph}
}
Document
A Crossing Lemma for Multigraphs

Authors: János Pach and Géza Tóth

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
Let G be a drawing of a graph with n vertices and e>4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton, the number of crossings in G is at least c{e^3 over n^2}, for a suitable constant c>0. In a seminal paper, Székely generalized this result to multigraphs, establishing the lower bound c{e^3 over mn^2}, where m denotes the maximum multiplicity of an edge in G. We get rid of the dependence on m by showing that, as in the original Crossing Lemma, the number of crossings is at least c'{e^3 over n^2} for some c'>0, provided that the "lens" enclosed by every pair of parallel edges in G contains at least one vertex. This settles a conjecture of Bekos, Kaufmann, and Raftopoulou.

Cite as

János Pach and Géza Tóth. A Crossing Lemma for Multigraphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 65:1-65:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{pach_et_al:LIPIcs.SoCG.2018.65,
  author =	{Pach, J\'{a}nos and T\'{o}th, G\'{e}za},
  title =	{{A Crossing Lemma for Multigraphs}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{65:1--65:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.65},
  URN =		{urn:nbn:de:0030-drops-87781},
  doi =		{10.4230/LIPIcs.SoCG.2018.65},
  annote =	{Keywords: crossing number, Crossing Lemma, multigraph, separator theorem}
}
Document
Disjointness Graphs of Segments

Authors: János Pach, Gábor Tardos, and Géza Tóth

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
The disjointness graph G=G(S) of a set of segments S in R^d, d>1 is a graph whose vertex set is S and two vertices are connected by an edge if and only if the corresponding segments are disjoint. We prove that the chromatic number of G satisfies chi(G)<=omega(G)^4+omega(G)^3 where omega(G) denotes the clique number of G. It follows, that S has at least cn^{1/5} pairwise intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of segments. We show that computing omega(G) and chi(G) for disjointness graphs of lines in space are NP-hard tasks. However, we can design efficient algorithms to compute proper colorings of G in which the number of colors satisfies the above upper bounds. One cannot expect similar results for sets of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are triangle-free (omega(G)=2), but whose chromatic numbers are arbitrarily large.

Cite as

János Pach, Gábor Tardos, and Géza Tóth. Disjointness Graphs of Segments. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 59:1-59:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{pach_et_al:LIPIcs.SoCG.2017.59,
  author =	{Pach, J\'{a}nos and Tardos, G\'{a}bor and T\'{o}th, G\'{e}za},
  title =	{{Disjointness Graphs of Segments}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{59:1--59:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.59},
  URN =		{urn:nbn:de:0030-drops-71960},
  doi =		{10.4230/LIPIcs.SoCG.2017.59},
  annote =	{Keywords: disjointness graph, chromatic number, clique number, chi-bounded}
}
  • Refine by Author
  • 4 Pach, János
  • 3 Tóth, Géza
  • 2 Tardos, Gábor
  • 1 Ambrus, Gergely
  • 1 Balko, Martin
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Mathematics of computing → Graph coloring
  • 1 Mathematics of computing → Graph theory
  • 1 Mathematics of computing → Hypergraphs
  • 1 Theory of computation → Computational geometry

  • Refine by Keyword
  • 2 chi-bounded
  • 2 chromatic number
  • 2 disjointness graph
  • 1 Crossing Lemma
  • 1 Diophantine approximation
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 1 2017
  • 1 2018
  • 1 2019
  • 1 2020
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail