2 Search Results for "Tang, Ning"


Document
Evaluation of the Age Latency of a Real-Time Communicating System Using the LET Paradigm

Authors: Alix Munier Kordon and Ning Tang

Published in: LIPIcs, Volume 165, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)


Abstract
Automotive and avionics embedded systems are usually composed of several tasks that are subject to complex timing constraints. In this context, the LET paradigm was introduced to improve the determinism of a system of tasks that communicate data through shared variables. The age latency corresponds to the maximum time for the propagation of data in these systems. Its precise evaluation is an important and challenging question for the design of these systems. We consider in this paper a set of multi-periodic tasks that communicate data following the LET paradigm. Our main contribution is the development of mathematical and algorithmic tools to model precisely the dependency between tasks executions to experiment with an original methodology for computing the age latency of the system. These tools allow to handle the whole graph instead of particular chains and to extract automatically the critical parts of the graph. Experiments on randomly generated graphs indicate that systems with up to 90 periodic tasks and a hyperperiod bounded by 100 can be handled within a reasonable amount of time.

Cite as

Alix Munier Kordon and Ning Tang. Evaluation of the Age Latency of a Real-Time Communicating System Using the LET Paradigm. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 165, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kordon_et_al:LIPIcs.ECRTS.2020.20,
  author =	{Kordon, Alix Munier and Tang, Ning},
  title =	{{Evaluation of the Age Latency of a Real-Time Communicating System Using the LET Paradigm}},
  booktitle =	{32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-152-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{165},
  editor =	{V\"{o}lp, Marcus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.20},
  URN =		{urn:nbn:de:0030-drops-123833},
  doi =		{10.4230/LIPIcs.ECRTS.2020.20},
  annote =	{Keywords: Real-Time Systems, Logical Execution Time, Age Latency}
}
Document
Online Makespan Minimization: The Power of Restart

Authors: Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We consider the online makespan minimization problem on identical machines. Chen and Vestjens (ORL 1997) show that the largest processing time first (LPT) algorithm is 1.5-competitive. For the special case of two machines, Noga and Seiden (TCS 2001) introduce the SLEEPY algorithm that achieves a competitive ratio of (5 - sqrt{5})/2 ~~ 1.382, matching the lower bound by Chen and Vestjens (ORL 1997). Furthermore, Noga and Seiden note that in many applications one can kill a job and restart it later, and they leave an open problem whether algorithms with restart can obtain better competitive ratios. We resolve this long-standing open problem on the positive end. Our algorithm has a natural rule for killing a processing job: a newly-arrived job replaces the smallest processing job if 1) the new job is larger than other pending jobs, 2) the new job is much larger than the processing one, and 3) the processed portion is small relative to the size of the new job. With appropriate choice of parameters, we show that our algorithm improves the 1.5 competitive ratio for the general case, and the 1.382 competitive ratio for the two-machine case.

Cite as

Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online Makespan Minimization: The Power of Restart. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.APPROX-RANDOM.2018.14,
  author =	{Huang, Zhiyi and Kang, Ning and Tang, Zhihao Gavin and Wu, Xiaowei and Zhang, Yuhao},
  title =	{{Online Makespan Minimization: The Power of Restart}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{14:1--14:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.14},
  URN =		{urn:nbn:de:0030-drops-94182},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.14},
  annote =	{Keywords: Online Scheduling, Makespan Minimization, Identical Machines}
}
  • Refine by Author
  • 1 Huang, Zhiyi
  • 1 Kang, Ning
  • 1 Kordon, Alix Munier
  • 1 Tang, Ning
  • 1 Tang, Zhihao Gavin
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Real-time systems
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Online algorithms
  • 1 Theory of computation → Scheduling algorithms

  • Refine by Keyword
  • 1 Age Latency
  • 1 Identical Machines
  • 1 Logical Execution Time
  • 1 Makespan Minimization
  • 1 Online Scheduling
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail