3 Search Results for "Theocharous, Leonidas"


Document
Clustering in Polygonal Domains

Authors: Mark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We study various clustering problems for a set D of n points in a polygonal domain P under the geodesic distance. We start by studying the discrete k-median problem for D in P. We develop an exact algorithm which runs in time poly(n,m) + n^O(√k), where m is the complexity of the domain. Subsequently, we show that our approach can also be applied to solve the k-center problem with z outliers in the same running time. Next, we turn our attention to approximation algorithms. In particular, we study the k-center problem in a simple polygon and show how to obtain a (1+ε)-approximation algorithm which runs in time 2^{O((k log(k))/ε)} (n log(m) + m). To obtain this, we demonstrate that a previous approach by Bădoiu et al. [Bâdoiu et al., 2002; Bâdoiu and Clarkson, 2003] that works in ℝ^d, carries over to the setting of simple polygons. Finally, we study the 1-center problem in a simple polygon in the presence of z outliers. We show that a coreset C of size O(z) exists, such that the 1-center of C is a 3-approximation of the 1-center of D, when z outliers are allowed. This result is actually more general and carries over to any metric space, which to the best of our knowledge was not known so far. By extending this approach, we show that for the 1-center problem under the Euclidean metric in ℝ², there exists an ε-coreset of size O(z/ε).

Cite as

Mark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous. Clustering in Polygonal Domains. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2023.23,
  author =	{de Berg, Mark and Biabani, Leyla and Monemizadeh, Morteza and Theocharous, Leonidas},
  title =	{{Clustering in Polygonal Domains}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.23},
  URN =		{urn:nbn:de:0030-drops-193252},
  doi =		{10.4230/LIPIcs.ISAAC.2023.23},
  annote =	{Keywords: clustering, geodesic distance, coreset, outliers}
}
Document
TSP in a Simple Polygon

Authors: Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites inside a simple polygon P with m edges while staying inside the polygon. This natural problem has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can be solved exactly in poly(n,m) + 2^O(√nlog n) time, using an algorithm by Marx, Pilipczuk, and Pilipczuk (FOCS 2018) for subset tsp as a subroutine. We present a much simpler algorithm that solves tsp in a simple polygon directly and that has the same running time.

Cite as

Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous. TSP in a Simple Polygon. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{alkema_et_al:LIPIcs.ESA.2022.5,
  author =	{Alkema, Henk and de Berg, Mark and Monemizadeh, Morteza and Theocharous, Leonidas},
  title =	{{TSP in a Simple Polygon}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.5},
  URN =		{urn:nbn:de:0030-drops-169434},
  doi =		{10.4230/LIPIcs.ESA.2022.5},
  annote =	{Keywords: Traveling Salesman Problem, Subexponential algorithms, TSP with obstacles}
}
Document
Clique-Based Separators for Geometric Intersection Graphs

Authors: Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Let F be a set of n objects in the plane and let 𝒢^{×}(F) be its intersection graph. A balanced clique-based separator of 𝒢^{×}(F) is a set 𝒮 consisting of cliques whose removal partitions 𝒢^{×}(F) into components of size at most δ n, for some fixed constant δ < 1. The weight of a clique-based separator is defined as ∑_{C ∈ 𝒮}log (|C|+1). Recently De Berg et al. (SICOMP 2020) proved that if S consists of convex fat objects, then 𝒢^{×}(F) admits a balanced clique-based separator of weight O(√n). We extend this result in several directions, obtaining the following results. - Map graphs admit a balanced clique-based separator of weight O(√n), which is tight in the worst case. - Intersection graphs of pseudo-disks admit a balanced clique-based separator of weight O(n^{2/3} log n). If the pseudo-disks are polygonal and of total complexity O(n) then the weight of the separator improves to O(√n log n). - Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based separator of weight O(n^{2/3} log n). - Visibility-restricted unit-disk graphs in a polygonal domain with r reflex vertices admit a balanced clique-based separator of weight O(√n + r log(n/r)), which is tight in the worst case. These results immediately imply sub-exponential algorithms for MAXIMUM INDEPENDENT SET (and, hence, VERTEX COVER), for FEEDBACK VERTEX SET, and for q-Coloring for constant q in these graph classes.

Cite as

Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous. Clique-Based Separators for Geometric Intersection Graphs. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2021.22,
  author =	{de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Monemizadeh, Morteza and Theocharous, Leonidas},
  title =	{{Clique-Based Separators for Geometric Intersection Graphs}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.22},
  URN =		{urn:nbn:de:0030-drops-154556},
  doi =		{10.4230/LIPIcs.ISAAC.2021.22},
  annote =	{Keywords: Computational geometry, intersection graphs, separator theorems}
}
  • Refine by Author
  • 3 Monemizadeh, Morteza
  • 3 Theocharous, Leonidas
  • 3 de Berg, Mark
  • 1 Alkema, Henk
  • 1 Biabani, Leyla
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 1 Computational geometry
  • 1 Subexponential algorithms
  • 1 TSP with obstacles
  • 1 Traveling Salesman Problem
  • 1 clustering
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2021
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail