3 Search Results for "Tian, Kevin"


Document
Track A: Algorithms, Complexity and Games
Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching

Authors: Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Box-simplex games are a family of bilinear minimax objectives which encapsulate graph-structured problems such as maximum flow [Sherman, 2017], optimal transport [Arun Jambulapati et al., 2019], and bipartite matching [Sepehr Assadi et al., 2022]. We develop efficient near-linear time, high-accuracy solvers for regularized variants of these games. Beyond the immediate applications of such solvers for computing Sinkhorn distances, a prominent tool in machine learning, we show that these solvers can be used to obtain improved running times for maintaining a (fractional) ε-approximate maximum matching in a dynamic decremental bipartite graph against an adaptive adversary. We give a generic framework which reduces this dynamic matching problem to solving regularized graph-structured optimization problems to high accuracy. Through our reduction framework, our regularized box-simplex game solver implies a new algorithm for dynamic decremental bipartite matching in total time Õ(m ⋅ ε^{-3}), from an initial graph with m edges and n nodes. We further show how to use recent advances in flow optimization [Chen et al., 2022] to improve our runtime to m^{1 + o(1)} ⋅ ε^{-2}, thereby demonstrating the versatility of our reduction-based approach. These results improve upon the previous best runtime of Õ(m ⋅ ε^{-4}) [Aaron Bernstein et al., 2020] and illustrate the utility of using regularized optimization problem solvers for designing dynamic algorithms.

Cite as

Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 77:1-77:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jambulapati_et_al:LIPIcs.ICALP.2022.77,
  author =	{Jambulapati, Arun and Jin, Yujia and Sidford, Aaron and Tian, Kevin},
  title =	{{Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{77:1--77:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.77},
  URN =		{urn:nbn:de:0030-drops-164181},
  doi =		{10.4230/LIPIcs.ICALP.2022.77},
  annote =	{Keywords: bipartite matching, decremental matching, dynamic algorithms, continuous optimization, box-simplex games, primal-dual method}
}
Document
Is the Space Complexity of Planted Clique Recovery the Same as That of Detection?

Authors: Jay Mardia

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We study the planted clique problem in which a clique of size k is planted in an Erdős-Rényi graph G(n, 1/2), and one is interested in either detecting or recovering this planted clique. This problem is interesting because it is widely believed to show a statistical-computational gap at clique size k = Θ(√n), and has emerged as the prototypical problem with such a gap from which average-case hardness of other statistical problems can be deduced. It also displays a tight computational connection between the detection and recovery variants, unlike other problems of a similar nature. This wide investigation into the computational complexity of the planted clique problem has, however, mostly focused on its time complexity. To begin investigating the robustness of these statistical-computational phenomena to changes in our notion of computational efficiency, we ask- Do the statistical-computational phenomena that make the planted clique an interesting problem also hold when we use "space efficiency" as our notion of computational efficiency? It is relatively easy to show that a positive answer to this question depends on the existence of a O(log n) space algorithm that can recover planted cliques of size k = Ω(√n). Our main result comes very close to designing such an algorithm. We show that for k = Ω(√n), the recovery problem can be solved in O((log^*{n}-log^*{k/(√n}) ⋅ log n) bits of space. 1) If k = ω(√nlog^{(𝓁)}n) for any constant integer 𝓁 > 0, the space usage is O(log n) bits. 2) If k = Θ(√n), the space usage is O(log^* n ⋅ log n) bits. Our result suggests that there does exist an O(log n) space algorithm to recover cliques of size k = Ω(√n), since we come very close to achieving such parameters. This provides evidence that the statistical-computational phenomena that (conjecturally) hold for planted clique time complexity also (conjecturally) hold for space complexity. Due to space limitations, we omit proofs from this manuscript. The entire paper with full proofs can be found on arXiv at https://arxiv.org/abs/2008.12825.

Cite as

Jay Mardia. Is the Space Complexity of Planted Clique Recovery the Same as That of Detection?. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mardia:LIPIcs.ITCS.2021.34,
  author =	{Mardia, Jay},
  title =	{{Is the Space Complexity of Planted Clique Recovery the Same as That of Detection?}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.34},
  URN =		{urn:nbn:de:0030-drops-135734},
  doi =		{10.4230/LIPIcs.ITCS.2021.34},
  annote =	{Keywords: Statistical computational gaps, Planted clique, Space complexity, Average case computational complexity}
}
Document
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration

Authors: Michael B. Cohen, Aaron Sidford, and Kevin Tian

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We show that standard extragradient methods (i.e. mirror prox [Arkadi Nemirovski, 2004] and dual extrapolation [Yurii Nesterov, 2007]) recover optimal accelerated rates for first-order minimization of smooth convex functions. To obtain this result we provide fine-grained characterization of the convergence rates of extragradient methods for solving monotone variational inequalities in terms of a natural condition we call relative Lipschitzness. We further generalize this framework to handle local and randomized notions of relative Lipschitzness and thereby recover rates for box-constrained 𝓁_∞ regression based on area convexity [Jonah Sherman, 2017] and complexity bounds achieved by accelerated (randomized) coordinate descent [Zeyuan {Allen Zhu} et al., 2016; Yurii Nesterov and Sebastian U. Stich, 2017] for smooth convex function minimization.

Cite as

Michael B. Cohen, Aaron Sidford, and Kevin Tian. Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 62:1-62:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ITCS.2021.62,
  author =	{Cohen, Michael B. and Sidford, Aaron and Tian, Kevin},
  title =	{{Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.62},
  URN =		{urn:nbn:de:0030-drops-136011},
  doi =		{10.4230/LIPIcs.ITCS.2021.62},
  annote =	{Keywords: Variational inequalities, minimax optimization, acceleration, 𝓁\underline∞ regression}
}
  • Refine by Author
  • 2 Sidford, Aaron
  • 2 Tian, Kevin
  • 1 Cohen, Michael B.
  • 1 Jambulapati, Arun
  • 1 Jin, Yujia
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Convex optimization
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Dynamic graph algorithms

  • Refine by Keyword
  • 1 Average case computational complexity
  • 1 Planted clique
  • 1 Space complexity
  • 1 Statistical computational gaps
  • 1 Variational inequalities
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail