1 Search Results for "Vafa, Neekon"


Document
Average-Case Hardness of NP and PH from Worst-Case Fine-Grained Assumptions

Authors: Lijie Chen, Shuichi Hirahara, and Neekon Vafa

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
What is a minimal worst-case complexity assumption that implies non-trivial average-case hardness of NP or PH? This question is well motivated by the theory of fine-grained average-case complexity and fine-grained cryptography. In this paper, we show that several standard worst-case complexity assumptions are sufficient to imply non-trivial average-case hardness of NP or PH: - NTIME[n] cannot be solved in quasi-linear time on average if UP ̸ ⊆ DTIME[2^{Õ(√n)}]. - Σ₂TIME[n] cannot be solved in quasi-linear time on average if Σ_kSAT cannot be solved in time 2^{Õ(√n)} for some constant k. Previously, it was not known if even average-case hardness of Σ₃SAT implies the average-case hardness of Σ₂TIME[n]. - Under the Exponential-Time Hypothesis (ETH), there is no average-case n^{1+ε}-time algorithm for NTIME[n] whose running time can be estimated in time n^{1+ε} for some constant ε > 0. Our results are given by generalizing the non-black-box worst-case-to-average-case connections presented by Hirahara (STOC 2021) to the settings of fine-grained complexity. To do so, we construct quite efficient complexity-theoretic pseudorandom generators under the assumption that the nondeterministic linear time is easy on average, which may be of independent interest.

Cite as

Lijie Chen, Shuichi Hirahara, and Neekon Vafa. Average-Case Hardness of NP and PH from Worst-Case Fine-Grained Assumptions. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2022.45,
  author =	{Chen, Lijie and Hirahara, Shuichi and Vafa, Neekon},
  title =	{{Average-Case Hardness of NP and PH from Worst-Case Fine-Grained Assumptions}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.45},
  URN =		{urn:nbn:de:0030-drops-156411},
  doi =		{10.4230/LIPIcs.ITCS.2022.45},
  annote =	{Keywords: Average-case complexity, worst-case to average-case reduction}
}
  • Refine by Author
  • 1 Chen, Lijie
  • 1 Hirahara, Shuichi
  • 1 Vafa, Neekon

  • Refine by Classification
  • 1 Theory of computation → Complexity classes

  • Refine by Keyword
  • 1 Average-case complexity
  • 1 worst-case to average-case reduction

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail