64 Search Results for "Vempala, Santosh"


Volume

LIPIcs, Volume 81

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)

APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA

Editors: Klaus Jansen, José D. P. Rolim, David P. Williamson, and Santosh S. Vempala

Document
Efficient Algorithms for Certifying Lower Bounds on the Discrepancy of Random Matrices

Authors: Prayaag Venkat

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In this paper, we initiate the study of the algorithmic problem of certifying lower bounds on the discrepancy of random matrices: given an input matrix A ∈ ℝ^{m × n}, output a value that is a lower bound on disc(A) = min_{x ∈ {± 1}ⁿ} ‖Ax‖_∞ for every A, but is close to the typical value of disc(A) with high probability over the choice of a random A. This problem is important because of its connections to conjecturally-hard average-case problems such as negatively-spiked PCA [Afonso S. Bandeira et al., 2020], the number-balancing problem [Gamarnik and Kızıldağ, 2021] and refuting random constraint satisfaction problems [Prasad Raghavendra et al., 2017]. We give the first polynomial-time algorithms with non-trivial guarantees for two main settings. First, when the entries of A are i.i.d. standard Gaussians, it is known that disc(A) = Θ (√n2^{-n/m}) with high probability [Karthekeyan Chandrasekaran and Santosh S. Vempala, 2014; Aubin et al., 2019; Paxton Turner et al., 2020] and that super-constant levels of the Sum-of-Squares SDP hierarchy fail to certify anything better than disc(A) ≥ 0 when m < n - o(n) [Mrinalkanti Ghosh et al., 2020]. In contrast, our algorithm certifies that disc(A) ≥ exp(-O(n²/m)) with high probability. As an application, this formally refutes a conjecture of Bandeira, Kunisky, and Wein [Afonso S. Bandeira et al., 2020] on the computational hardness of the detection problem in the negatively-spiked Wishart model. Second, we consider the integer partitioning problem: given n uniformly random b-bit integers a₁, …, a_n, certify the non-existence of a perfect partition, i.e. certify that disc(A) ≥ 1 for A = (a₁, …, a_n). Under the scaling b = α n, it is known that the probability of the existence of a perfect partition undergoes a phase transition from 1 to 0 at α = 1 [Christian Borgs et al., 2001]; our algorithm certifies the non-existence of perfect partitions for some α = O(n). We also give efficient non-deterministic algorithms with significantly improved guarantees, raising the possibility that the landscape of these certification problems closely resembles that of e.g. the problem of refuting random 3SAT formulas in the unsatisfiable regime. Our algorithms involve a reduction to the Shortest Vector Problem and employ the Lenstra-Lenstra-Lovász algorithm.

Cite as

Prayaag Venkat. Efficient Algorithms for Certifying Lower Bounds on the Discrepancy of Random Matrices. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 98:1-98:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{venkat:LIPIcs.ITCS.2023.98,
  author =	{Venkat, Prayaag},
  title =	{{Efficient Algorithms for Certifying Lower Bounds on the Discrepancy of Random Matrices}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{98:1--98:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.98},
  URN =		{urn:nbn:de:0030-drops-176015},
  doi =		{10.4230/LIPIcs.ITCS.2023.98},
  annote =	{Keywords: Average-case discrepancy theory, lattices, shortest vector problem}
}
Document
RANDOM
A Unified Approach to Discrepancy Minimization

Authors: Nikhil Bansal, Aditi Laddha, and Santosh Vempala

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We study a unified approach and algorithm for constructive discrepancy minimization based on a stochastic process. By varying the parameters of the process, one can recover various state-of-the-art results. We demonstrate the flexibility of the method by deriving a discrepancy bound for smoothed instances, which interpolates between known bounds for worst-case and random instances.

Cite as

Nikhil Bansal, Aditi Laddha, and Santosh Vempala. A Unified Approach to Discrepancy Minimization. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 1:1-1:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.APPROX/RANDOM.2022.1,
  author =	{Bansal, Nikhil and Laddha, Aditi and Vempala, Santosh},
  title =	{{A Unified Approach to Discrepancy Minimization}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{1:1--1:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.1},
  URN =		{urn:nbn:de:0030-drops-171238},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.1},
  annote =	{Keywords: Discrepancy theory, smoothed analysis}
}
Document
Invited Talk
The Manifold Joys of Sampling (Invited Talk)

Authors: Yin Tat Lee and Santosh S. Vempala

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We survey recent progress and many open questions in the field of sampling high-dimensional distributions, with specific focus on sampling with non-Euclidean metrics.

Cite as

Yin Tat Lee and Santosh S. Vempala. The Manifold Joys of Sampling (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.ICALP.2022.4,
  author =	{Lee, Yin Tat and Vempala, Santosh S.},
  title =	{{The Manifold Joys of Sampling}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.4},
  URN =		{urn:nbn:de:0030-drops-163459},
  doi =		{10.4230/LIPIcs.ICALP.2022.4},
  annote =	{Keywords: Sampling, Diffusion, Optimization, High Dimension}
}
Document
Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes Fast

Authors: Aditi Laddha and Santosh S. Vempala

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
The Gibbs Sampler is a general method for sampling high-dimensional distributions, dating back to 1971. In each step of the Gibbs Sampler, we pick a random coordinate and re-sample that coordinate from the distribution induced by fixing all the other coordinates. While it has become widely used over the past half-century, guarantees of efficient convergence have been elusive. We show that for a convex body K in ℝⁿ with diameter D, the mixing time of the Coordinate Hit-and-Run (CHAR) algorithm on K is polynomial in n and D. We also give a lower bound on the mixing rate of CHAR, showing that it is strictly worse than hit-and-run and the ball walk in the worst case.

Cite as

Aditi Laddha and Santosh S. Vempala. Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes Fast. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 51:1-51:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{laddha_et_al:LIPIcs.SoCG.2021.51,
  author =	{Laddha, Aditi and Vempala, Santosh S.},
  title =	{{Convergence of Gibbs Sampling: Coordinate Hit-And-Run Mixes Fast}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{51:1--51:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.51},
  URN =		{urn:nbn:de:0030-drops-138503},
  doi =		{10.4230/LIPIcs.SoCG.2021.51},
  annote =	{Keywords: Gibbs Sampler, Coordinate Hit and run, Mixing time of Markov Chain}
}
Document
How to Find a Point in the Convex Hull Privately

Authors: Haim Kaplan, Micha Sharir, and Uri Stemmer

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We study the question of how to compute a point in the convex hull of an input set S of n points in ℝ^d in a differentially private manner. This question, which is trivial without privacy requirements, turns out to be quite deep when imposing differential privacy. In particular, it is known that the input points must reside on a fixed finite subset G ⊆ ℝ^d, and furthermore, the size of S must grow with the size of G. Previous works [Amos Beimel et al., 2010; Amos Beimel et al., 2019; Amos Beimel et al., 2013; Mark Bun et al., 2018; Mark Bun et al., 2015; Haim Kaplan et al., 2019] focused on understanding how n needs to grow with |G|, and showed that n=O(d^2.5 ⋅ 8^(log^*|G|)) suffices (so n does not have to grow significantly with |G|). However, the available constructions exhibit running time at least |G|^d², where typically |G|=X^d for some (large) discretization parameter X, so the running time is in fact Ω(X^d³). In this paper we give a differentially private algorithm that runs in O(n^d) time, assuming that n=Ω(d⁴ log X). To get this result we study and exploit some structural properties of the Tukey levels (the regions D_{≥ k} consisting of points whose Tukey depth is at least k, for k=0,1,…). In particular, we derive lower bounds on their volumes for point sets S in general position, and develop a rather subtle mechanism for handling point sets S in degenerate position (where the deep Tukey regions have zero volume). A naive approach to the construction of the Tukey regions requires n^O(d²) time. To reduce the cost to O(n^d), we use an approximation scheme for estimating the volumes of the Tukey regions (within their affine spans in case of degeneracy), and for sampling a point from such a region, a scheme that is based on the volume estimation framework of Lovász and Vempala [László Lovász and Santosh S. Vempala, 2006] and of Cousins and Vempala [Ben Cousins and Santosh S. Vempala, 2018]. Making this framework differentially private raises a set of technical challenges that we address.

Cite as

Haim Kaplan, Micha Sharir, and Uri Stemmer. How to Find a Point in the Convex Hull Privately. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.SoCG.2020.52,
  author =	{Kaplan, Haim and Sharir, Micha and Stemmer, Uri},
  title =	{{How to Find a Point in the Convex Hull Privately}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{52:1--52:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.52},
  URN =		{urn:nbn:de:0030-drops-122107},
  doi =		{10.4230/LIPIcs.SoCG.2020.52},
  annote =	{Keywords: Differential privacy, Tukey depth, Convex hull}
}
Document
RANDOM
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions

Authors: Zongchen Chen and Santosh S. Vempala

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to e^{-f} where f:R^d -> R is mu-strongly convex and L-smooth (the condition number is kappa = L/mu). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is O(kappa), improving on the previous best bound of O(kappa^{1.5}); we complement this with an example where the relaxation time is Omega(kappa). When implemented using a nearly optimal ODE solver, HMC returns an epsilon-approximate point in 2-Wasserstein distance using O~((kappa d)^{0.5} epsilon^{-1}) gradient evaluations per step and O~((kappa d)^{1.5}epsilon^{-1}) total time.

Cite as

Zongchen Chen and Santosh S. Vempala. Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 64:1-64:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX-RANDOM.2019.64,
  author =	{Chen, Zongchen and Vempala, Santosh S.},
  title =	{{Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{64:1--64:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.64},
  URN =		{urn:nbn:de:0030-drops-112790},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.64},
  annote =	{Keywords: logconcave distribution, sampling, Hamiltonian Monte Carlo, spectral gap, strong convexity}
}
Document
Random Projection in the Brain and Computation with Assemblies of Neurons

Authors: Christos H. Papadimitriou and Santosh S. Vempala

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
It has been recently shown via simulations [Dasgupta et al., 2017] that random projection followed by a cap operation (setting to one the k largest elements of a vector and everything else to zero), a map believed to be an important part of the insect olfactory system, has strong locality sensitivity properties. We calculate the asymptotic law whereby the overlap in the input vectors is conserved, verifying mathematically this empirical finding. We then focus on the far more complex homologous operation in the mammalian brain, the creation through successive projections and caps of an assembly (roughly, a set of excitatory neurons representing a memory or concept) in the presence of recurrent synapses and plasticity. After providing a careful definition of assemblies, we prove that the operation of assembly projection converges with high probability, over the randomness of synaptic connectivity, even if plasticity is relatively small (previous proofs relied on high plasticity). We also show that assembly projection has itself some locality preservation properties. Finally, we propose a large repertoire of assembly operations, including associate, merge, reciprocal project, and append, each of them both biologically plausible and consistent with what we know from experiments, and show that this computational system is capable of simulating, again with high probability, arbitrary computation in a quite natural way. We hope that this novel way of looking at brain computation, open-ended and based on reasonably mainstream ideas in neuroscience, may prove an attractive entry point for computer scientists to work on understanding the brain.

Cite as

Christos H. Papadimitriou and Santosh S. Vempala. Random Projection in the Brain and Computation with Assemblies of Neurons. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 57:1-57:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{papadimitriou_et_al:LIPIcs.ITCS.2019.57,
  author =	{Papadimitriou, Christos H. and Vempala, Santosh S.},
  title =	{{Random Projection in the Brain and Computation with Assemblies of Neurons}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{57:1--57:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.57},
  URN =		{urn:nbn:de:0030-drops-101506},
  doi =		{10.4230/LIPIcs.ITCS.2019.57},
  annote =	{Keywords: Brain computation, random projection, assemblies, plasticity, memory, association}
}
Document
Invited Paper
Continuous Algorithms (Invited Paper)

Authors: Santosh Vempala

Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)


Abstract
While the design of algorithms is traditionally a discrete endeavour, in recent years many advances have come from continuous perspectives. Typically, a continuous process, deterministic or randomized, is designed and shown to have desirable properties, such as approaching an optimal solution or a target distribution, and an algorithm is derived from this by appropriate discretization. We will discuss examples of this for optimization (gradient descent, interior-point method) and sampling (Brownian motion, Hamiltonian Monte Carlo), with applications to learning. In some interesting and rather general settings, the current fastest methods have been obtained via this approach.

Cite as

Santosh Vempala. Continuous Algorithms (Invited Paper). In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, p. 4:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{vempala:LIPIcs.FSTTCS.2018.4,
  author =	{Vempala, Santosh},
  title =	{{Continuous Algorithms}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{4:1--4:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Ganguly, Sumit and Pandya, Paritosh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.4},
  URN =		{urn:nbn:de:0030-drops-99037},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.4},
  annote =	{Keywords: Algorithms}
}
Document
Long Term Memory and the Densest K-Subgraph Problem

Authors: Robert Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh S. Vempala

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
In a recent experiment, a cell in the human medial temporal lobe (MTL) encoding one sensory stimulus starts to also respond to a second stimulus following a combined experience associating the two. We develop a theoretical model predicting that an assembly of cells with exceptionally high synaptic intraconnectivity can emerge, in response to a particular sensory experience, to encode and abstract that experience. We also show that two such assemblies are modified to increase their intersection after a sensory event that associates the two corresponding stimuli. The main technical tools employed are random graph theory, and Bernoulli approximations. Assembly creation must overcome a computational challenge akin to the Densest K-Subgraph problem, namely selecting, from a large population of randomly and sparsely interconnected cells, a subset with exceptionally high density of interconnections. We identify three mechanisms that help achieve this feat in our model: (1) a simple two-stage randomized algorithm, and (2) the "triangle completion bias" in synaptic connectivity and a "birthday paradox", while (3) the strength of these connections is enhanced through Hebbian plasticity.

Cite as

Robert Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh S. Vempala. Long Term Memory and the Densest K-Subgraph Problem. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{legenstein_et_al:LIPIcs.ITCS.2018.57,
  author =	{Legenstein, Robert and Maass, Wolfgang and Papadimitriou, Christos H. and Vempala, Santosh S.},
  title =	{{Long Term Memory and the Densest K-Subgraph Problem}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{57:1--57:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.57},
  URN =		{urn:nbn:de:0030-drops-83593},
  doi =		{10.4230/LIPIcs.ITCS.2018.57},
  annote =	{Keywords: Brain computation, long term memory, assemblies, association}
}
Document
Towards Human Computable Passwords

Authors: Jeremiah Blocki, Manuel Blum, Anupam Datta, and Santosh Vempala

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
An interesting challenge for the cryptography community is to design authentication protocols that are so simple that a human can execute them without relying on a fully trusted computer. We propose several candidate authentication protocols for a setting in which the human user can only receive assistance from a semi-trusted computer - a computer that stores information and performs computations correctly but does not provide confidentiality. Our schemes use a semi-trusted computer to store and display public challenges C_i\in[n]^k. The human user memorizes a random secret mapping \sigma:[n]\rightarrow \mathbb{Z}_d and authenticates by computing responses f(\sigma(C_i)) to a sequence of public challenges where f:\mathbb{Z}_d^k\rightarrow \mathbb{Z}_d is a function that is easy for the human to evaluate. We prove that any statistical adversary needs to sample m=\tilde{\Omega}\paren{n^{s(f)}} challenge-response pairs to recover \sigma, for a security parameter s(f) that depends on two key properties of f. Our lower bound generalizes recent results of Feldman et al. [Feldman'15] who proved analogous results for the special case d=2. To obtain our results, we apply the general hypercontractivity theorem [O'Donnell'14] to lower bound the statistical dimension of the distribution over challenge-response pairs induced by f and \sigma. Our statistical dimension lower bounds apply to arbitrary functions f:\mathbb{Z}_d^k\rightarrow \mathbb{Z}_d (not just to functions that are easy for a human to evaluate). As an application, we propose a family of human computable password functions f_{k_1,k_2} in which the user needs to perform 2k_1+2k_2+1 primitive operations (e.g., adding two digits or remembering a secret value \sigma(i)), and we show that s(f) = \min{k_1+1, (k_2+1)/2}. For these schemes, we prove that forging passwords is equivalent to recovering the secret mapping. Thus, our human computable password schemes can maintain strong security guarantees even after an adversary has observed the user login to many different accounts.

Cite as

Jeremiah Blocki, Manuel Blum, Anupam Datta, and Santosh Vempala. Towards Human Computable Passwords. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 10:1-10:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{blocki_et_al:LIPIcs.ITCS.2017.10,
  author =	{Blocki, Jeremiah and Blum, Manuel and Datta, Anupam and Vempala, Santosh},
  title =	{{Towards Human Computable Passwords}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{10:1--10:47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.10},
  URN =		{urn:nbn:de:0030-drops-81847},
  doi =		{10.4230/LIPIcs.ITCS.2017.10},
  annote =	{Keywords: Passwords, Cognitive Authentication, Human Computation, Planted Constraint Satisfaction Problem, Statistical Dimension}
}
Document
Complete Volume
LIPIcs, Volume 81, APPROX/RANDOM'17, Complete Volume

Authors: Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
LIPIcs, Volume 81, APPROX/RANDOM'17, Complete Volume

Cite as

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Proceedings{jansen_et_al:LIPIcs.APPROX-RANDOM.2017,
  title =	{{LIPIcs, Volume 81, APPROX/RANDOM'17, Complete Volume}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017},
  URN =		{urn:nbn:de:0030-drops-77101},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017},
  annote =	{Keywords: Network Architecture and Design, Coding and Information Theory, Error Control Codes, Modes of Computation: Online computation, Complexity Measures and Classes, Analysis of Algorithms and Problem Complexity, Numerical Algorithms and Problems, Nonnumerical Algorithms and Problems}
}
Document
Front Matter
Frontmatter, Table of Contents, Preface, Organization, External Reviewers, List of Authors

Authors: Klaus Jansen, José D. P. Rolim, David P. Williamson, and Santosh S. Vempala

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
Frontmatter, Table of Contents, Preface, Organization, External Reviewers, List of Authors

Cite as

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, p. 0:i, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.APPROX-RANDOM.2017.0,
  author =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  title =	{{Frontmatter, Table of Contents, Preface, Organization, External Reviewers, List of Authors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{0:i--0:i},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.0},
  URN =		{urn:nbn:de:0030-drops-75493},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.0},
  annote =	{Keywords: Frontmatter, Table of Contents, Preface, Organization, External Reviewers, List of Authors}
}
Document
Min-Cost Bipartite Perfect Matching with Delays

Authors: Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
In the min-cost bipartite perfect matching with delays (MBPMD) problem, requests arrive online at points of a finite metric space. Each request is either positive or negative and has to be matched to a request of opposite polarity. As opposed to traditional online matching problems, the algorithm does not have to serve requests as they arrive, and may choose to match them later at a cost. Our objective is to minimize the sum of the distances between matched pairs of requests (the connection cost) and the sum of the waiting times of the requests (the delay cost). This objective exhibits a natural tradeoff between minimizing the distances and the cost of waiting for better matches. This tradeoff appears in many real-life scenarios, notably, ride-sharing platforms. MBPMD is related to its non-bipartite variant, min-cost perfect matching with delays (MPMD), in which each request can be matched to any other request. MPMD was introduced by Emek et al. (STOC'16), who showed an O(log^2(n)+log(Delta))-competitive randomized algorithm on n-point metric spaces with aspect ratio Delta. Our contribution is threefold. First, we present a new lower bound construction for MPMD and MBPMD. We get a lower bound of Omega(sqrt(log(n)/log(log(n)))) on the competitive ratio of any randomized algorithm for MBPMD. For MPMD, we improve the lower bound from Omega(sqrt(log(n))) (shown by Azar et al., SODA'17) to Omega(log(n)/log(log(n))), thus, almost matching their upper bound of O(log(n)). Second, we adapt the algorithm of Emek et al. to the bipartite case, and provide a simplified analysis that improves the competitive ratio to O(log(n)). The key ingredient of the algorithm is an O(h)-competitive randomized algorithm for MBPMD on weighted trees of height h. Third, we provide an O(h)-competitive deterministic algorithm for MBPMD on weighted trees of height h. This algorithm is obtained by adapting the algorithm for MPMD by Azar et al. to the apparently more complicated bipartite setting.

Cite as

Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-Cost Bipartite Perfect Matching with Delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{ashlagi_et_al:LIPIcs.APPROX-RANDOM.2017.1,
  author =	{Ashlagi, Itai and Azar, Yossi and Charikar, Moses and Chiplunkar, Ashish and Geri, Ofir and Kaplan, Haim and Makhijani, Rahul and Wang, Yuyi and Wattenhofer, Roger},
  title =	{{Min-Cost Bipartite Perfect Matching with Delays}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.1},
  URN =		{urn:nbn:de:0030-drops-75509},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.1},
  annote =	{Keywords: online algorithms with delayed service, bipartite matching, competitive analysis}
}
Document
Global and Fixed-Terminal Cuts in Digraphs

Authors: Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Euiwoong Lee, and Chao Xu

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
The computational complexity of multicut-like problems may vary significantly depending on whether the terminals are fixed or not. In this work we present a comprehensive study of this phenomenon in two types of cut problems in directed graphs: double cut and bicut. 1. Fixed-terminal edge-weighted double cut is known to be solvable efficiently. We show that fixed-terminal node-weighted double cut cannot be approximated to a factor smaller than 2 under the Unique Games Conjecture (UGC), and we also give a 2-approximation algorithm. For the global version of the problem, we prove an inapproximability bound of 3/2 under UGC. 2. Fixed-terminal edge-weighted bicut is known to have an approximability factor of 2 that is tight under UGC. We show that the global edge-weighted bicut is approximable to a factor strictly better than 2, and that the global node-weighted bicut cannot be approximated to a factor smaller than 3/2 under UGC. 3. In relation to these investigations, we also prove two results on undirected graphs which are of independent interest. First, we show NP-completeness and a tight inapproximability bound of 4/3 for the node-weighted 3-cut problem under UGC. Second, we show that for constant k, there exists an efficient algorithm to solve the minimum {s,t}-separating k-cut problem. Our techniques for the algorithms are combinatorial, based on LPs and based on the enumeration of approximate min-cuts. Our hardness results are based on combinatorial reductions and integrality gap instances.

Cite as

Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Euiwoong Lee, and Chao Xu. Global and Fixed-Terminal Cuts in Digraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{berczi_et_al:LIPIcs.APPROX-RANDOM.2017.2,
  author =	{B\'{e}rczi, Krist\'{o}f and Chandrasekaran, Karthekeyan and Kir\'{a}ly, Tam\'{a}s and Lee, Euiwoong and Xu, Chao},
  title =	{{Global and Fixed-Terminal Cuts in Digraphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.2},
  URN =		{urn:nbn:de:0030-drops-75511},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.2},
  annote =	{Keywords: Directed Graphs, Arborescence, Graph Cuts, Hardness of Approximation}
}
  • Refine by Author
  • 9 Vempala, Santosh S.
  • 5 Guruswami, Venkatesan
  • 3 Jansen, Klaus
  • 3 Vempala, Santosh
  • 2 Brakensiek, Joshua
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Design and analysis of algorithms
  • 4 Theory of computation → Randomness, geometry and discrete structures
  • 1 Mathematics of computing → Markov processes
  • 1 Security and privacy → Formal methods and theory of security
  • 1 Theory of computation → Models of computation
  • Show More...

  • Refine by Keyword
  • 3 Approximation Algorithms
  • 3 approximation algorithms
  • 2 Brain computation
  • 2 Property Testing
  • 2 assemblies
  • Show More...

  • Refine by Type
  • 63 document
  • 1 volume

  • Refine by Publication Year
  • 53 2017
  • 2 2018
  • 2 2019
  • 2 2022
  • 1 2010
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail