2 Search Results for "Wang, Jiaheng"


Document
RANDOM
Improved Bounds for Randomly Colouring Simple Hypergraphs

Authors: Weiming Feng, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree Δ. For any δ > 0, if k ≥ 20(1+δ)/δ and q ≥ 100Δ^({2+δ}/{k-4/δ-4}), the running time of our algorithm is Õ(poly(Δ k)⋅ n^1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require Ω(log n) colours unlike the work of Frieze and Anastos (2017).

Cite as

Weiming Feng, Heng Guo, and Jiaheng Wang. Improved Bounds for Randomly Colouring Simple Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.APPROX/RANDOM.2022.25,
  author =	{Feng, Weiming and Guo, Heng and Wang, Jiaheng},
  title =	{{Improved Bounds for Randomly Colouring Simple Hypergraphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.25},
  URN =		{urn:nbn:de:0030-drops-171477},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.25},
  annote =	{Keywords: Approximate counting, Markov chain, Mixing time, Hypergraph colouring}
}
Document
Track A: Algorithms, Complexity and Games
On the Degree of Boolean Functions as Polynomials over ℤ_m

Authors: Xiaoming Sun, Yuan Sun, Jiaheng Wang, Kewen Wu, Zhiyu Xia, and Yufan Zheng

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Polynomial representations of Boolean functions over various rings such as ℤ and ℤ_m have been studied since Minsky and Papert (1969). From then on, they have been employed in a large variety of areas including communication complexity, circuit complexity, learning theory, coding theory and so on. For any integer m ≥ 2, each Boolean function has a unique multilinear polynomial representation over ring ℤ_m. The degree of such polynomial is called modulo-m degree, denoted as deg_m(⋅). In this paper, we investigate the lower bound of modulo-m degree of Boolean functions. When m = p^k (k ≥ 1) for some prime p, we give a tight lower bound deg_m(f) ≥ k(p-1) for any non-degenerate function f:{0,1}ⁿ → {0,1}, provided that n is sufficient large. When m contains two different prime factors p and q, we give a nearly optimal lower bound for any symmetric function f:{0,1}ⁿ → {0,1} that deg_m(f) ≥ n/{2+1/(p-1)+1/(q-1)}.

Cite as

Xiaoming Sun, Yuan Sun, Jiaheng Wang, Kewen Wu, Zhiyu Xia, and Yufan Zheng. On the Degree of Boolean Functions as Polynomials over ℤ_m. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 100:1-100:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ICALP.2020.100,
  author =	{Sun, Xiaoming and Sun, Yuan and Wang, Jiaheng and Wu, Kewen and Xia, Zhiyu and Zheng, Yufan},
  title =	{{On the Degree of Boolean Functions as Polynomials over \mathbb{Z}\underlinem}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{100:1--100:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.100},
  URN =		{urn:nbn:de:0030-drops-125070},
  doi =		{10.4230/LIPIcs.ICALP.2020.100},
  annote =	{Keywords: Boolean function, polynomial, modular degree, Ramsey theory}
}
  • Refine by Author
  • 2 Wang, Jiaheng
  • 1 Feng, Weiming
  • 1 Guo, Heng
  • 1 Sun, Xiaoming
  • 1 Sun, Yuan
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Random walks and Markov chains

  • Refine by Keyword
  • 1 Approximate counting
  • 1 Boolean function
  • 1 Hypergraph colouring
  • 1 Markov chain
  • 1 Mixing time
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail