2 Search Results for "Weismantel, Robert"


Document
Efficient Sequential and Parallel Algorithms for Multistage Stochastic Integer Programming Using Proximity

Authors: Jana Cslovjecsek, Friedrich Eisenbrand, Michał Pilipczuk, Moritz Venzin, and Robert Weismantel

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We consider the problem of solving integer programs of the form min {c^⊺ x : Ax = b, x ∈ ℤ_{⩾ 0}}, where A is a multistage stochastic matrix in the following sense: the primal treedepth of A is bounded by a parameter d, which means that the columns of A can be organized into a rooted forest of depth at most d so that columns not bound by the ancestor/descendant relation do not have non-zero entries in the same row. We give an algorithm that solves this problem in fixed-parameter time f(d,‖A‖_{∞})⋅ nlog^{𝒪(2^d)} n, where f is a computable function and n is the number of rows of A. The algorithm works in the strong model, where the running time only measures unit arithmetic operations on the input numbers and does not depend on their bitlength. This is the first fpt algorithm for multistage stochastic integer programming to achieve almost linear running time in the strong sense. For two-stage stochastic integer programs, our algorithm works in time 2^{((r+s)‖A‖_∞)^{𝒪(r(r+s))}}⋅ nlog^{𝒪(rs)} n, which improves over previous methods both in terms of the polynomial factor and in terms of the dependence on r and s. In fact, for r = 1 the dependence on s is asymptotically almost tight assuming the Exponential Time Hypothesis. Our algorithm can be also parallelized: we give an implementation in the PRAM model that achieves running time f(d,‖A‖_{∞})⋅ log^{𝒪(2^d)} n using n processors. The main conceptual ingredient in our algorithms is a new proximity result for multistage stochastic integer programs. We prove that if we consider an integer program P, say with a constraint matrix A, then for every optimum solution to the linear relaxation of P there exists an optimum (integral) solution to P that lies, in the 𝓁_{∞}-norm, within distance bounded by a function of ‖A‖_{∞} and the primal treedepth of A. On the way to achieve this result, we prove a generalization and considerable improvement of a structural result of Klein for multistage stochastic integer programs. Once the proximity results are established, this allows us to apply a treedepth-based branching strategy guided by an optimum solution to the linear relaxation.

Cite as

Jana Cslovjecsek, Friedrich Eisenbrand, Michał Pilipczuk, Moritz Venzin, and Robert Weismantel. Efficient Sequential and Parallel Algorithms for Multistage Stochastic Integer Programming Using Proximity. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cslovjecsek_et_al:LIPIcs.ESA.2021.33,
  author =	{Cslovjecsek, Jana and Eisenbrand, Friedrich and Pilipczuk, Micha{\l} and Venzin, Moritz and Weismantel, Robert},
  title =	{{Efficient Sequential and Parallel Algorithms for Multistage Stochastic Integer Programming Using Proximity}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.33},
  URN =		{urn:nbn:de:0030-drops-146146},
  doi =		{10.4230/LIPIcs.ESA.2021.33},
  annote =	{Keywords: parameterized algorithm, multistage stochastic programming, proximity}
}
Document
Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints

Authors: Dušan Knop, Michał Pilipczuk, and Marcin Wrochna

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We consider the standard ILP Feasibility problem: given an integer linear program of the form {Ax = b, x >= 0}, where A is an integer matrix with k rows and l columns, x is a vector of l variables, and b is a vector of k integers, we ask whether there exists x in N^l that satisfies Ax = b. Each row of A specifies one linear constraint on x; our goal is to study the complexity of ILP Feasibility when both k, the number of constraints, and |A|_infty, the largest absolute value of an entry in A, are small. Papadimitriou [Christos H. Papadimitriou, 1981] was the first to give a fixed-parameter algorithm for ILP Feasibility under parameterization by the number of constraints that runs in time ((|A |_infty + |b|_infty) * k)^O(k^2). This was very recently improved by Eisenbrand and Weismantel [Friedrich Eisenbrand and Robert Weismantel, 2018], who used the Steinitz lemma to design an algorithm with running time (k |A|_infty)^{O(k)}* |b|_infty^2, which was subsequently improved by Jansen and Rohwedder [Klaus Jansen and Lars Rohwedder, 2019] to O(k |A |_infty)^k* log |b|_infty. We prove that for {0,1}-matrices A, the running time of the algorithm of Eisenbrand and Weismantel is probably optimal: an algorithm with running time 2^{o(k log k)}* (l+|{b}|_infty)^{o(k)} would contradict the Exponential Time Hypothesis (ETH). This improves previous non-tight lower bounds of Fomin et al. [Fedor V. Fomin et al., 2018]. We then consider integer linear programs that may have many constraints, but they need to be structured in a "shallow" way. Precisely, we consider the parameter {dual treedepth} of the matrix A, denoted td_D(A), which is the treedepth of the graph over the rows of A, where two rows are adjacent if in some column they simultaneously contain a non-zero entry. It was recently shown by Koutecký et al. [Martin Koutecký et al., 2018] that {ILP Feasibility} can be solved in time |A |_infty^{2^O(td_D(A))} * (k+l+log |b|_infty)^O(1). We present a streamlined proof of this fact and prove that, again, this running time is probably optimal: even assuming that all entries of A and {b} are in {-1,0,1}, the existence of an algorithm with running time 2^{2^o(td_D(A))} * (k+l)^O(1) would contradict the ETH.

Cite as

Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{knop_et_al:LIPIcs.STACS.2019.44,
  author =	{Knop, Du\v{s}an and Pilipczuk, Micha{\l} and Wrochna, Marcin},
  title =	{{Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.44},
  URN =		{urn:nbn:de:0030-drops-102831},
  doi =		{10.4230/LIPIcs.STACS.2019.44},
  annote =	{Keywords: integer linear programming, fixed-parameter tractability, ETH}
}
  • Refine by Author
  • 2 Pilipczuk, Michał
  • 1 Cslovjecsek, Jana
  • 1 Eisenbrand, Friedrich
  • 1 Knop, Dušan
  • 1 Venzin, Moritz
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Fixed parameter tractability
  • 1 Theory of computation → Integer programming

  • Refine by Keyword
  • 1 ETH
  • 1 fixed-parameter tractability
  • 1 integer linear programming
  • 1 multistage stochastic programming
  • 1 parameterized algorithm
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail