2 Search Results for "Wolf, Sascha"


Document
Engineering Negative Cycle Canceling for Wind Farm Cabling

Authors: Sascha Gritzbach, Torsten Ueckerdt, Dorothea Wagner, Franziska Wegner, and Matthias Wolf

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
In a wind farm turbines convert wind energy into electrical energy. The generation of each turbine is transmitted, possibly via other turbines, to a substation that is connected to the power grid. On every possible interconnection there can be at most one of various different cable types. Each cable type comes with a cost per unit length and with a capacity. Designing a cost-minimal cable layout for a wind farm to feed all turbine production into the power grid is called the Wind Farm Cabling Problem (WCP). We consider a formulation of WCP as a flow problem on a graph where the cost of a flow on an edge is modeled by a step function originating from the cable types. Recently, we presented a proof-of-concept for a negative cycle canceling-based algorithm for WCP [Sascha Gritzbach et al., 2018]. We extend key steps of that heuristic and build a theoretical foundation that explains how this heuristic tackles the problems arising from the special structure of WCP. A thorough experimental evaluation identifies the best setup of the algorithm and compares it to existing methods from the literature such as Mixed-integer Linear Programming (MILP) and Simulated Annealing (SA). The heuristic runs in a range of half a millisecond to under two minutes on instances with up to 500 turbines. It provides solutions of similar quality compared to both competitors with running times of one hour and one day. When comparing the solution quality after a running time of two seconds, our algorithm outperforms the MILP- and SA-approaches, which allows it to be applied in interactive wind farm planning.

Cite as

Sascha Gritzbach, Torsten Ueckerdt, Dorothea Wagner, Franziska Wegner, and Matthias Wolf. Engineering Negative Cycle Canceling for Wind Farm Cabling. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 55:1-55:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gritzbach_et_al:LIPIcs.ESA.2019.55,
  author =	{Gritzbach, Sascha and Ueckerdt, Torsten and Wagner, Dorothea and Wegner, Franziska and Wolf, Matthias},
  title =	{{Engineering Negative Cycle Canceling for Wind Farm Cabling}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{55:1--55:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.55},
  URN =		{urn:nbn:de:0030-drops-111766},
  doi =		{10.4230/LIPIcs.ESA.2019.55},
  annote =	{Keywords: Negative Cycle Canceling, Step Cost Function, Wind Farm Planning}
}
Document
A Network Approach to Bayes-Nash Incentive Compatible Mechanisms

Authors: Rudolf Müller, Andres Perea, and Sascha Wolf

Published in: Dagstuhl Seminar Proceedings, Volume 5011, Computing and Markets (2005)


Abstract
This paper provides a characterization of Bayes-Nash incentive compatible mechanisms in settings where agents have one-dimensional or multi-dimensional types, quasi-linear utility functions and interdependent valuations. The characterization is derived in terms of conditions for the underlying allocation function. We do this by making a link to network theory and building complete directed graphs for agents type spaces. We show that an allocation rule is Bayes-Nash incentive compatible if and only if these graphs have no negative, finite cycles. In the case of one-dimensional types and given certain properties for agents valuation functions, we show that this condition reduces to the absence of negative 2-cycles. In the case of multi-dimensional types and given a linearity requirement on the valuation functions, we show that this condition reduces to the absence of negative 2-cycles and an integratebility condition on the valuation functions.

Cite as

Rudolf Müller, Andres Perea, and Sascha Wolf. A Network Approach to Bayes-Nash Incentive Compatible Mechanisms. In Computing and Markets. Dagstuhl Seminar Proceedings, Volume 5011, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{muller_et_al:DagSemProc.05011.4,
  author =	{M\"{u}ller, Rudolf and Perea, Andres and Wolf, Sascha},
  title =	{{A Network Approach to Bayes-Nash Incentive Compatible Mechanisms}},
  booktitle =	{Computing and Markets},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5011},
  editor =	{Daniel Lehmann and Rudolf M\"{u}ller and Tuomas Sandholm},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.05011.4},
  URN =		{urn:nbn:de:0030-drops-2056},
  doi =		{10.4230/DagSemProc.05011.4},
  annote =	{Keywords: compact representation of games, congestion games, local-effect games, action-graph gamescomputational markets; auctions; bidding strategiesNegotiatio}
}
  • Refine by Author
  • 1 Gritzbach, Sascha
  • 1 Müller, Rudolf
  • 1 Perea, Andres
  • 1 Ueckerdt, Torsten
  • 1 Wagner, Dorothea
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Network flows
  • 1 Mathematics of computing → Network optimization

  • Refine by Keyword
  • 1 Negative Cycle Canceling
  • 1 Step Cost Function
  • 1 Wind Farm Planning
  • 1 action-graph gamescomputational markets; auctions; bidding strategiesNegotiatio
  • 1 compact representation of games
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2005
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail