283 Search Results for "Worrell, James"


Volume

LIPIcs, Volume 198

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference)

Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell

Volume

LIPIcs, Volume 117

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)

MFCS 2018, August 27-31, 2018, Liverpool, GB

Editors: Igor Potapov, Paul Spirakis, and James Worrell

Document
Nonnegativity Problems for Matrix Semigroups

Authors: Julian D'Costa, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The matrix semigroup membership problem asks, given square matrices M,M₁,…,M_k of the same dimension, whether M lies in the semigroup generated by M₁,…,M_k. It is classical that this problem is undecidable in general, but decidable in case M₁,…,M_k commute. In this paper we consider the problem of whether, given M₁,…,M_k, the semigroup generated by M₁,…,M_k contains a non-negative matrix. We show that in case M₁,…,M_k commute, this problem is decidable subject to Schanuel’s Conjecture. We show also that the problem is undecidable if the commutativity assumption is dropped. A key lemma in our decidability proof is a procedure to determine, given a matrix M, whether the sequence of matrices (Mⁿ)_{n = 0}^∞ is ultimately nonnegative. This answers a problem posed by S. Akshay [S. Akshay et al., 2022]. The latter result is in stark contrast to the notorious fact that it is not known how to determine, for any specific matrix index (i,j), whether the sequence (Mⁿ)_{i,j} is ultimately nonnegative. Indeed the latter is equivalent to the Ultimate Positivity Problem for linear recurrence sequences, a longstanding open problem.

Cite as

Julian D'Costa, Joël Ouaknine, and James Worrell. Nonnegativity Problems for Matrix Semigroups. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.STACS.2024.27,
  author =	{D'Costa, Julian and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{Nonnegativity Problems for Matrix Semigroups}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.27},
  URN =		{urn:nbn:de:0030-drops-197371},
  doi =		{10.4230/LIPIcs.STACS.2024.27},
  annote =	{Keywords: Decidability, Linear Recurrence Sequences, Schanuel’s Conjecture}
}
Document
Invited Talk
The Skolem Landscape (Invited Talk)

Authors: James Worrell

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
The Skolem Problem asks to determine whether a given integer linear recurrence sequence (LRS) has a zero term. This decision problem arises within a number of different topics in computer science, including loop termination, weighted automata, formal power series, and probabilistic model checking, among many other examples. Decidability of the problem is notoriously open, despite having been the subject of sustained interest over several decades [Halava et al., 2005]. More specifically, the problem is known to be decidable for recurrences of order at most 4 - a result obtained some 40 years ago [Mignotte et al., 1984; Vereshchagin, 1985] - while decidability is open already for recurrences of order 5. In this talk we take a wide-ranging view of the Skolem Problem. We survey its history and context, starting with the theorem of Skolem-Mahler-Lech characterising the set of zeros of a LRS over fields of characteristic zero. Here we explain the non-effective nature of the existing proofs of the theorem. Among modern developments, we overview versions of the Skolem-Mahler-Lech theorem for non-linear recurrences and for fields of non-zero characteristic. We also describe two recent directions of progress toward showing decidability of the Skolem Problem subject to classical number theoretic conjectures. The first new development concerns a recent algorithm [Y. Bilu et al., 2022] that decides the problem on the class of simple LRS (those with simple characteristic roots) subject to two classical conjectures about the exponential function. The algorithm is self-certifying: its output comes with a certificate of correctness that can be checked unconditionally. The two conjectures alluded to above are required for the proof of termination of the algorithm. A second new development concerns the notion of Universal Skolem Set [F. Luca et al., 2022]: a recursive set S of positive integers such that it is decidable whether a given non-degenerate linear recurrence sequence has a zero in S. Decidability of the Skolem Problem is equivalent to the assertion that ℕ is a Universal Skolem Set. In lieu of this one can ask whether there exists a Universal Skolem Set of density one. We will present a recent a construction of a Universal Skolem Set that has positive density unconditionally and has density one subject to the Bateman-Horn conjecture in number theory. The latter is a far-reaching generalisation of Hardy and Littlewood’s twin primes conjecture.

Cite as

James Worrell. The Skolem Landscape (Invited Talk). In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 5:1-5:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{worrell:LIPIcs.ICALP.2023.5,
  author =	{Worrell, James},
  title =	{{The Skolem Landscape}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{5:1--5:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.5},
  URN =		{urn:nbn:de:0030-drops-180573},
  doi =		{10.4230/LIPIcs.ICALP.2023.5},
  annote =	{Keywords: Automata, Formal Languages, Linear Recurrence Sequences}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Positivity Problems for Reversible Linear Recurrence Sequences

Authors: George Kenison, Joris Nieuwveld, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
It is a longstanding open problem whether there is an algorithm to decide the Positivity Problem for linear recurrence sequences (LRS) over the integers, namely whether given such a sequence, all its terms are non-negative. Decidability is known for LRS of order 5 or less, i.e., for those sequences in which every new term depends linearly on the previous five (or fewer) terms. For simple LRS (i.e., those sequences whose characteristic polynomials have no repeated roots), decidability of Positivity is known up to order 9. In this paper, we focus on the important subclass of reversible LRS, i.e., those integer LRS ⟨u_n⟩_{n=0}^∞ whose bi-infinite completion ⟨u_n⟩_{n=-∞}^∞ also takes exclusively integer values; a typical example is the classical Fibonacci (bi-)sequence ⟨ … , 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, … ⟩. Our main results are that Positivity is decidable for reversible LRS of order 11 or less, and for simple reversible LRS of order 17 or less.

Cite as

George Kenison, Joris Nieuwveld, Joël Ouaknine, and James Worrell. Positivity Problems for Reversible Linear Recurrence Sequences. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 130:1-130:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kenison_et_al:LIPIcs.ICALP.2023.130,
  author =	{Kenison, George and Nieuwveld, Joris and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{Positivity Problems for Reversible Linear Recurrence Sequences}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{130:1--130:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.130},
  URN =		{urn:nbn:de:0030-drops-181821},
  doi =		{10.4230/LIPIcs.ICALP.2023.130},
  annote =	{Keywords: The Positivity Problem, Linear Recurrence Sequences, Verification}
}
Document
Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the model-checking problem for parametric probabilistic dynamical systems, formalised as Markov chains with parametric transition functions, analysed under the distribution-transformer semantics (in which a Markov chain induces a sequence of distributions over states). We examine the problem of synthesising the set of parameter valuations of a parametric Markov chain such that the orbits of induced state distributions satisfy a prefix-independent ω-regular property. Our main result establishes that in all non-degenerate instances, the feasible set of parameters is (up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2022.10,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10},
  URN =		{urn:nbn:de:0030-drops-170732},
  doi =		{10.4230/LIPIcs.CONCUR.2022.10},
  annote =	{Keywords: Model checking, parametric Markov chains, distribution transformer semantics}
}
Document
Skolem Meets Schanuel

Authors: Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The celebrated Skolem-Mahler-Lech Theorem states that the set of zeros of a linear recurrence sequence is the union of a finite set and finitely many arithmetic progressions. The corresponding computational question, the Skolem Problem, asks to determine whether a given linear recurrence sequence has a zero term. Although the Skolem-Mahler-Lech Theorem is almost 90 years old, decidability of the Skolem Problem remains open. The main contribution of this paper is an algorithm to solve the Skolem Problem for simple linear recurrence sequences (those with simple characteristic roots). Whenever the algorithm terminates, it produces a stand-alone certificate that its output is correct - a set of zeros together with a collection of witnesses that no further zeros exist. We give a proof that the algorithm always terminates assuming two classical number-theoretic conjectures: the Skolem Conjecture (also known as the Exponential Local-Global Principle) and the p-adic Schanuel Conjecture. Preliminary experiments with an implementation of this algorithm within the tool Skolem point to the practical applicability of this method.

Cite as

Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell. Skolem Meets Schanuel. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bilu_et_al:LIPIcs.MFCS.2022.20,
  author =	{Bilu, Yuri and Luca, Florian and Nieuwveld, Joris and Ouaknine, Jo\"{e}l and Purser, David and Worrell, James},
  title =	{{Skolem Meets Schanuel}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.20},
  URN =		{urn:nbn:de:0030-drops-168180},
  doi =		{10.4230/LIPIcs.MFCS.2022.20},
  annote =	{Keywords: Skolem Problem, Skolem Conjecture, Exponential Local-Global Principle, p-adic Schanuel Conjecture}
}
Document
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set

Authors: Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound.

Cite as

Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell. Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2022.39,
  author =	{D'Costa, Julian and Lefaucheux, Engel and Neumann, Eike and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{39:1--39:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.39},
  URN =		{urn:nbn:de:0030-drops-168374},
  doi =		{10.4230/LIPIcs.MFCS.2022.39},
  annote =	{Keywords: Discrete linear dynamical systems, Program termination, Compact semialgebraic sets, Uniform termination bounds}
}
Document
The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems

Authors: Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-orbits can be viewed as a model of computation with limited precision and pseudo-reachability can be thought of as a robust version of classical reachability. Using an approach based on o-minimality of ℝ_exp we prove decidability of the discrete-time pseudo-reachability problem with arbitrary semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded reachability problem, which is known to be conditionally decidable.

Cite as

Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, and James Worrell. The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 40:1-40:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2022.40,
  author =	{D'Costa, Julian and Karimov, Toghrul and Majumdar, Rupak and Ouaknine, Jo\"{e}l and Salamati, Mahmoud and Worrell, James},
  title =	{{The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{40:1--40:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.40},
  URN =		{urn:nbn:de:0030-drops-168380},
  doi =		{10.4230/LIPIcs.MFCS.2022.40},
  annote =	{Keywords: pseudo-orbits, Orbit problem, Skolem problem, linear dynamical systems, reachability}
}
Document
A Universal Skolem Set of Positive Lower Density

Authors: Florian Luca, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The Skolem Problem asks to decide whether a given integer linear recurrence sequence (LRS) has a zero term. Decidability of this problem has been open for many decades, with little progress since the 1980s. Recently, a new approach was initiated via the notion of a Skolem set - a set of positive integers relative to which the Skolem Problem is decidable. More precisely, 𝒮 is a Skolem set for a class ℒ of integer LRS if there is an effective procedure that, given an LRS in ℒ, decides whether the sequence has a zero in 𝒮. A recent work exhibited a Skolem set for the class of all LRS that, while infinite, had density zero. In the present work we construct a Skolem set of positive lower density for the class of simple LRS .

Cite as

Florian Luca, Joël Ouaknine, and James Worrell. A Universal Skolem Set of Positive Lower Density. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 73:1-73:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{luca_et_al:LIPIcs.MFCS.2022.73,
  author =	{Luca, Florian and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{A Universal Skolem Set of Positive Lower Density}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{73:1--73:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.73},
  URN =		{urn:nbn:de:0030-drops-168711},
  doi =		{10.4230/LIPIcs.MFCS.2022.73},
  annote =	{Keywords: Linear Recurrence Sequences, Skolem Problem, Exponential Diophantine Equations, Sieve Methods}
}
Document
Revisiting Parameter Synthesis for One-Counter Automata

Authors: Guillermo A. Pérez and Ritam Raha

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
We study the synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some ω-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called ∀∃_RPAD^+, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of ∀∃_RPAD^+, (ii) we prove that the synthesis problem is decidable in general and in 2NEXP for several fixed ω-regular properties. Finally, (iii) we give polynomial-space algorithms for the special cases of the problem where parameters can only be used in counter tests.

Cite as

Guillermo A. Pérez and Ritam Raha. Revisiting Parameter Synthesis for One-Counter Automata. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 33:1-33:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{perez_et_al:LIPIcs.CSL.2022.33,
  author =	{P\'{e}rez, Guillermo A. and Raha, Ritam},
  title =	{{Revisiting Parameter Synthesis for One-Counter Automata}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.33},
  URN =		{urn:nbn:de:0030-drops-157534},
  doi =		{10.4230/LIPIcs.CSL.2022.33},
  annote =	{Keywords: Parametric one-counter automata, Reachability, Software Verification}
}
Document
Equivalence Testing of Weighted Automata over Partially Commutative Monoids

Authors: V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
Motivated by equivalence testing of k-tape automata, we study the equivalence testing of weighted automata in the more general setting, over partially commutative monoids (in short, pc monoids), and show efficient algorithms in some special cases, exploiting the structure of the underlying non-commutation graph of the monoid. Specifically, if the edge clique cover number of the non-commutation graph of the pc monoid is a constant, we obtain a deterministic quasi-polynomial time algorithm for equivalence testing. As a corollary, we obtain the first deterministic quasi-polynomial time algorithms for equivalence testing of k-tape weighted automata and for equivalence testing of deterministic k-tape automata for constant k. Prior to this, the best complexity upper bound for these k-tape automata problems were randomized polynomial-time, shown by Worrell [James Worrell, 2013]. Finding a polynomial-time deterministic algorithm for equivalence testing of deterministic k-tape automata for constant k has been open for several years [Emily P. Friedman and Sheila A. Greibach, 1982] and our results make progress. We also consider pc monoids for which the non-commutation graphs have an edge cover consisting of at most k cliques and star graphs for any constant k. We obtain a randomized polynomial-time algorithm for equivalence testing of weighted automata over such monoids. Our results are obtained by designing efficient zero-testing algorithms for weighted automata over such pc monoids.

Cite as

V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. Equivalence Testing of Weighted Automata over Partially Commutative Monoids. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arvind_et_al:LIPIcs.MFCS.2021.10,
  author =	{Arvind, V. and Chatterjee, Abhranil and Datta, Rajit and Mukhopadhyay, Partha},
  title =	{{Equivalence Testing of Weighted Automata over Partially Commutative Monoids}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.10},
  URN =		{urn:nbn:de:0030-drops-144503},
  doi =		{10.4230/LIPIcs.MFCS.2021.10},
  annote =	{Keywords: Weighted Automata, Automata Equivalence, Partially Commutative Monoid}
}
Document
On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets

Authors: Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study the computational complexity of the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets, or equivalently the Termination Problem for affine loops with compact semialgebraic guard sets. Consider the fragment of the theory of the reals consisting of negation-free ∃ ∀-sentences without strict inequalities. We derive several equivalent characterisations of the associated complexity class which demonstrate its robustness and illustrate its expressive power. We show that the Compact Escape Problem is complete for this class.

Cite as

Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell. On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 33:1-33:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2021.33,
  author =	{D'Costa, Julian and Lefaucheux, Engel and Neumann, Eike and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{33:1--33:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.33},
  URN =		{urn:nbn:de:0030-drops-144734},
  doi =		{10.4230/LIPIcs.MFCS.2021.33},
  annote =	{Keywords: Discrete linear dynamical systems, Program termination, Compact semialgebraic sets, Theory of the reals}
}
Document
The Pseudo-Skolem Problem is Decidable

Authors: Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, Sadegh Soudjani, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study fundamental decision problems on linear dynamical systems in discrete time. We focus on pseudo-orbits, the collection of trajectories of the dynamical system for which there is an arbitrarily small perturbation at each step. Pseudo-orbits are generalizations of orbits in the topological theory of dynamical systems. We study the pseudo-orbit problem, whether a state belongs to the pseudo-orbit of another state, and the pseudo-Skolem problem, whether a hyperplane is reachable by an ε-pseudo-orbit for every ε. These problems are analogous to the well-studied orbit problem and Skolem problem on unperturbed dynamical systems. Our main results show that the pseudo-orbit problem is decidable in polynomial time and the Skolem problem on pseudo-orbits is decidable. The former extends the seminal result of Kannan and Lipton from orbits to pseudo-orbits. The latter is in contrast to the Skolem problem for linear dynamical systems, which remains open for proper orbits.

Cite as

Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, Sadegh Soudjani, and James Worrell. The Pseudo-Skolem Problem is Decidable. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 34:1-34:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2021.34,
  author =	{D'Costa, Julian and Karimov, Toghrul and Majumdar, Rupak and Ouaknine, Jo\"{e}l and Salamati, Mahmoud and Soudjani, Sadegh and Worrell, James},
  title =	{{The Pseudo-Skolem Problem is Decidable}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{34:1--34:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.34},
  URN =		{urn:nbn:de:0030-drops-144742},
  doi =		{10.4230/LIPIcs.MFCS.2021.34},
  annote =	{Keywords: Pseudo-orbits, Orbit problem, Skolem problem, linear dynamical systems}
}
Document
On Positivity and Minimality for Second-Order Holonomic Sequences

Authors: George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
An infinite sequence ⟨u_n⟩_n of real numbers is holonomic (also known as P-recursive or P-finite) if it satisfies a linear recurrence relation with polynomial coefficients. Such a sequence is said to be positive if each u_n ≥ 0, and minimal if, given any other linearly independent sequence ⟨v_n⟩_n satisfying the same recurrence relation, the ratio u_n/v_n → 0 as n → ∞. In this paper we give a Turing reduction of the problem of deciding positivity of second-order holonomic sequences to that of deciding minimality of such sequences. More specifically, we give a procedure for determining positivity of second-order holonomic sequences that terminates in all but an exceptional number of cases, and we show that in these exceptional cases positivity can be determined using an oracle for deciding minimality.

Cite as

George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell. On Positivity and Minimality for Second-Order Holonomic Sequences. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 67:1-67:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kenison_et_al:LIPIcs.MFCS.2021.67,
  author =	{Kenison, George and Klurman, Oleksiy and Lefaucheux, Engel and Luca, Florian and Moree, Pieter and Ouaknine, Jo\"{e}l and Whiteland, Markus A. and Worrell, James},
  title =	{{On Positivity and Minimality for Second-Order Holonomic Sequences}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{67:1--67:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.67},
  URN =		{urn:nbn:de:0030-drops-145071},
  doi =		{10.4230/LIPIcs.MFCS.2021.67},
  annote =	{Keywords: Holonomic sequences, Minimal solutions, Positivity Problem}
}
  • Refine by Author
  • 44 Worrell, James
  • 32 Ouaknine, Joël
  • 6 Almagor, Shaull
  • 6 D'Costa, Julian
  • 6 Kiefer, Stefan
  • Show More...

  • Refine by Classification
  • 23 Theory of computation → Design and analysis of algorithms
  • 19 Theory of computation → Logic and verification
  • 17 Theory of computation → Graph algorithms analysis
  • 14 Theory of computation → Problems, reductions and completeness
  • 13 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 7 approximation algorithms
  • 6 Approximation Algorithms
  • 6 linear dynamical systems
  • 5 Treewidth
  • 5 streaming algorithms
  • Show More...

  • Refine by Type
  • 281 document
  • 2 volume

  • Refine by Publication Year
  • 152 2021
  • 91 2018
  • 11 2020
  • 6 2019
  • 6 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail