7 Search Results for "Wu, Xinyu"


Document
𝓁_p-Spread and Restricted Isometry Properties of Sparse Random Matrices

Authors: Venkatesan Guruswami, Peter Manohar, and Jonathan Mosheiff

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
Random subspaces X of ℝⁿ of dimension proportional to n are, with high probability, well-spread with respect to the 𝓁₂-norm. Namely, every nonzero x ∈ X is "robustly non-sparse" in the following sense: x is ε ‖x‖₂-far in 𝓁₂-distance from all δ n-sparse vectors, for positive constants ε, δ bounded away from 0. This "𝓁₂-spread" property is the natural counterpart, for subspaces over the reals, of the minimum distance of linear codes over finite fields, and corresponds to X being a Euclidean section of the 𝓁₁ unit ball. Explicit 𝓁₂-spread subspaces of dimension Ω(n), however, are unknown, and the best known explicit constructions (which achieve weaker spread properties), are analogs of low density parity check (LDPC) codes over the reals, i.e., they are kernels of certain sparse matrices. Motivated by this, we study the spread properties of the kernels of sparse random matrices. We prove that with high probability such subspaces contain vectors x that are o(1)⋅‖x‖₂-close to o(n)-sparse with respect to the 𝓁₂-norm, and in particular are not 𝓁₂-spread. This is strikingly different from the case of random LDPC codes, whose distance is asymptotically almost as good as that of (dense) random linear codes. On the other hand, for p < 2 we prove that such subspaces are 𝓁_p-spread with high probability. The spread property of sparse random matrices thus exhibits a threshold behavior at p = 2. Our proof for p < 2 moreover shows that a random sparse matrix has the stronger restricted isometry property (RIP) with respect to the 𝓁_p norm, and in fact this follows solely from the unique expansion of a random biregular graph, yielding a somewhat unexpected generalization of a similar result for the 𝓁₁ norm [Berinde et al., 2008]. Instantiating this with suitable explicit expanders, we obtain the first explicit constructions of 𝓁_p-RIP matrices for 1 ≤ p < p₀, where 1 < p₀ < 2 is an absolute constant.

Cite as

Venkatesan Guruswami, Peter Manohar, and Jonathan Mosheiff. 𝓁_p-Spread and Restricted Isometry Properties of Sparse Random Matrices. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2022.7,
  author =	{Guruswami, Venkatesan and Manohar, Peter and Mosheiff, Jonathan},
  title =	{{𝓁\underlinep-Spread and Restricted Isometry Properties of Sparse Random Matrices}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.7},
  URN =		{urn:nbn:de:0030-drops-165695},
  doi =		{10.4230/LIPIcs.CCC.2022.7},
  annote =	{Keywords: Spread Subspaces, Euclidean Sections, Restricted Isometry Property, Sparse Matrices}
}
Document
Track A: Algorithms, Complexity and Games
The SDP Value of Random 2CSPs

Authors: Amulya Musipatla, Ryan O'Donnell, Tselil Schramm, and Xinyu Wu

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We consider a very wide class of models for sparse random Boolean 2CSPs; equivalently, degree-2 optimization problems over {±1}ⁿ. For each model ℳ, we identify the "high-probability value" s^*_ℳ of the natural SDP relaxation (equivalently, the quantum value). That is, for all ε > 0 we show that the SDP optimum of a random n-variable instance is (when normalized by n) in the range (s^*_ℳ-ε, s^*_ℳ+ε) with high probability. Our class of models includes non-regular CSPs, and ones where the SDP relaxation value is strictly smaller than the spectral relaxation value.

Cite as

Amulya Musipatla, Ryan O'Donnell, Tselil Schramm, and Xinyu Wu. The SDP Value of Random 2CSPs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 97:1-97:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{musipatla_et_al:LIPIcs.ICALP.2022.97,
  author =	{Musipatla, Amulya and O'Donnell, Ryan and Schramm, Tselil and Wu, Xinyu},
  title =	{{The SDP Value of Random 2CSPs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{97:1--97:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.97},
  URN =		{urn:nbn:de:0030-drops-164381},
  doi =		{10.4230/LIPIcs.ICALP.2022.97},
  annote =	{Keywords: Random constraint satisfaction problems}
}
Document
Analyzing XOR-Forrelation Through Stochastic Calculus

Authors: Xinyu Wu

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
In this note we present a simplified analysis of the quantum and classical complexity of the k-XOR Forrelation problem (introduced in the paper of Girish, Raz and Zhan [Uma Girish et al., 2020]) by a stochastic interpretation of the Forrelation distribution.

Cite as

Xinyu Wu. Analyzing XOR-Forrelation Through Stochastic Calculus. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 60:1-60:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{wu:LIPIcs.STACS.2022.60,
  author =	{Wu, Xinyu},
  title =	{{Analyzing XOR-Forrelation Through Stochastic Calculus}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{60:1--60:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.60},
  URN =		{urn:nbn:de:0030-drops-158705},
  doi =		{10.4230/LIPIcs.STACS.2022.60},
  annote =	{Keywords: quantum complexity, Brownian motion}
}
Document
A Stress-Free Sum-Of-Squares Lower Bound for Coloring

Authors: Pravesh K. Kothari and Peter Manohar

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We prove that with high probability over the choice of a random graph G from the Erdős-Rényi distribution G(n, 1/2), a natural n^{O(ε² log n)}-time, degree O(ε² log n) sum-of-squares semidefinite program cannot refute the existence of a valid k-coloring of G for k = n^{1/2 + ε}. Our result implies that the refutation guarantee of the basic semidefinite program (a close variant of the Lovász theta function) cannot be appreciably improved by a natural o(log n)-degree sum-of-squares strengthening, and this is tight up to a n^{o(1)} slack in k. To the best of our knowledge, this is the first lower bound for coloring G(n, 1/2) for even a single round strengthening of the basic SDP in any SDP hierarchy. Our proof relies on a new variant of instance-preserving non-pointwise complete reduction within SoS from coloring a graph to finding large independent sets in it. Our proof is (perhaps surprisingly) short, simple and does not require complicated spectral norm bounds on random matrices with dependent entries that have been otherwise necessary in the proofs of many similar results [Boaz Barak et al., 2016; S. B. {Hopkins} et al., 2017; Dmitriy Kunisky and Afonso S. Bandeira, 2019; Mrinalkanti Ghosh et al., 2020; Mohanty et al., 2020]. Our result formally holds for a constraint system where vertices are allowed to belong to multiple color classes; we leave the extension to the formally stronger formulation of coloring, where vertices must belong to unique colors classes, as an outstanding open problem.

Cite as

Pravesh K. Kothari and Peter Manohar. A Stress-Free Sum-Of-Squares Lower Bound for Coloring. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kothari_et_al:LIPIcs.CCC.2021.23,
  author =	{Kothari, Pravesh K. and Manohar, Peter},
  title =	{{A Stress-Free Sum-Of-Squares Lower Bound for Coloring}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{23:1--23:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.23},
  URN =		{urn:nbn:de:0030-drops-142978},
  doi =		{10.4230/LIPIcs.CCC.2021.23},
  annote =	{Keywords: Sum-of-Squares, Graph Coloring, Independent Set, Lower Bounds}
}
Document
The SDP Value for Random Two-Eigenvalue CSPs

Authors: Sidhanth Mohanty, Ryan O'Donnell, and Pedro Paredes

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
We precisely determine the SDP value (equivalently, quantum value) of large random instances of certain kinds of constraint satisfaction problems, "two-eigenvalue 2CSPs". We show this SDP value coincides with the spectral relaxation value, possibly indicating a computational threshold. Our analysis extends the previously resolved cases of random regular 2XOR and NAE-3SAT, and includes new cases such as random Sort₄ (equivalently, CHSH) and Forrelation CSPs. Our techniques include new generalizations of the nonbacktracking operator, the Ihara-Bass Formula, and the Friedman/Bordenave proof of Alon’s Conjecture.

Cite as

Sidhanth Mohanty, Ryan O'Donnell, and Pedro Paredes. The SDP Value for Random Two-Eigenvalue CSPs. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 50:1-50:45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{mohanty_et_al:LIPIcs.STACS.2020.50,
  author =	{Mohanty, Sidhanth and O'Donnell, Ryan and Paredes, Pedro},
  title =	{{The SDP Value for Random Two-Eigenvalue CSPs}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{50:1--50:45},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.50},
  URN =		{urn:nbn:de:0030-drops-119110},
  doi =		{10.4230/LIPIcs.STACS.2020.50},
  annote =	{Keywords: Semidefinite programming, constraint satisfaction problems}
}
Document
APPROX
Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

Authors: Venkatesan Guruswami and Sai Sandeep

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
A k-uniform hypergraph is said to be r-rainbow colorable if there is an r-coloring of its vertices such that every hyperedge intersects all r color classes. Given as input such a hypergraph, finding a r-rainbow coloring of it is NP-hard for all k >= 3 and r >= 2. Therefore, one settles for finding a rainbow coloring with fewer colors (which is an easier task). When r=k (the maximum possible value), i.e., the hypergraph is k-partite, one can efficiently 2-rainbow color the hypergraph, i.e., 2-color its vertices so that there are no monochromatic edges. In this work we consider the next smaller value of r=k-1, and prove that in this case it is NP-hard to rainbow color the hypergraph with q := ceil[(k-2)/2] colors. In particular, for k <=6, it is NP-hard to 2-color (k-1)-rainbow colorable k-uniform hypergraphs. Our proof follows the algebraic approach to promise constraint satisfaction problems. It proceeds by characterizing the polymorphisms associated with the approximate rainbow coloring problem, which are rainbow colorings of some product hypergraphs on vertex set [r]^n. We prove that any such polymorphism f: [r]^n -> [q] must be C-fixing, i.e., there is a small subset S of C coordinates and a setting a in [q]^S such that fixing x_{|S} = a determines the value of f(x). The key step in our proof is bounding the sensitivity of certain rainbow colorings, thereby arguing that they must be juntas. Armed with the C-fixing characterization, our NP-hardness is obtained via a reduction from smooth Label Cover.

Cite as

Venkatesan Guruswami and Sai Sandeep. Rainbow Coloring Hardness via Low Sensitivity Polymorphisms. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.APPROX-RANDOM.2019.15,
  author =	{Guruswami, Venkatesan and Sandeep, Sai},
  title =	{{Rainbow Coloring Hardness via Low Sensitivity Polymorphisms}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.15},
  URN =		{urn:nbn:de:0030-drops-112303},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.15},
  annote =	{Keywords: inapproximability, hardness of approximation, constraint satisfaction, hypergraph coloring, polymorphisms}
}
Document
A Log-Sobolev Inequality for the Multislice, with Applications

Authors: Yuval Filmus, Ryan O'Donnell, and Xinyu Wu

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
Let kappa in N_+^l satisfy kappa_1 + *s + kappa_l = n, and let U_kappa denote the multislice of all strings u in [l]^n having exactly kappa_i coordinates equal to i, for all i in [l]. Consider the Markov chain on U_kappa where a step is a random transposition of two coordinates of u. We show that the log-Sobolev constant rho_kappa for the chain satisfies rho_kappa^{-1} <= n * sum_{i=1}^l 1/2 log_2(4n/kappa_i), which is sharp up to constants whenever l is constant. From this, we derive some consequences for small-set expansion and isoperimetry in the multislice, including a KKL Theorem, a Kruskal - Katona Theorem for the multislice, a Friedgut Junta Theorem, and a Nisan - Szegedy Theorem.

Cite as

Yuval Filmus, Ryan O'Donnell, and Xinyu Wu. A Log-Sobolev Inequality for the Multislice, with Applications. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 34:1-34:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{filmus_et_al:LIPIcs.ITCS.2019.34,
  author =	{Filmus, Yuval and O'Donnell, Ryan and Wu, Xinyu},
  title =	{{A Log-Sobolev Inequality for the Multislice, with Applications}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{34:1--34:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.34},
  URN =		{urn:nbn:de:0030-drops-101279},
  doi =		{10.4230/LIPIcs.ITCS.2019.34},
  annote =	{Keywords: log-Sobolev inequality, small-set expansion, conductance, hypercontractivity, Fourier analysis, representation theory, Markov chains, combinatorics}
}
  • Refine by Author
  • 3 O'Donnell, Ryan
  • 3 Wu, Xinyu
  • 2 Guruswami, Venkatesan
  • 2 Manohar, Peter
  • 1 Filmus, Yuval
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Approximation algorithms analysis
  • 1 Mathematics of computing → Markov processes
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Pseudorandomness and derandomization
  • 1 Theory of computation → Quantum complexity theory
  • Show More...

  • Refine by Keyword
  • 1 Brownian motion
  • 1 Euclidean Sections
  • 1 Fourier analysis
  • 1 Graph Coloring
  • 1 Independent Set
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2022
  • 2 2019
  • 1 2020
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail