4 Search Results for "Yoshinaka, Ryo"


Document
Parallel Algorithm for Pattern Matching Problems Under Substring Consistent Equivalence Relations

Authors: Davaajav Jargalsaikhan, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara

Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)


Abstract
Given a text and a pattern over an alphabet, the pattern matching problem searches for all occurrences of the pattern in the text. An equivalence relation ≈ is a substring consistent equivalence relation (SCER), if for two strings X and Y, X ≈ Y implies |X| = |Y| and X[i:j] ≈ Y[i:j] for all 1 ≤ i ≤ j ≤ |X|. In this paper, we propose an efficient parallel algorithm for pattern matching under any SCER using the "duel-and-sweep" paradigm. For a pattern of length m and a text of length n, our algorithm runs in O(ξ_m^t log³ m) time and O(ξ_m^w ⋅ n log² m) work, with O(τ_n^t + ξ_m^t log² m) time and O(τ_n^w + ξ_m^w ⋅ m log² m) work preprocessing on the Priority Concurrent Read Concurrent Write Parallel Random-Access Machines (P-CRCW PRAM), where τ_n^t, τ_n^w, ξ_m^t, and ξ_m^w are parameters dependent on SCERs, which are often linear in n and m, respectively.

Cite as

Davaajav Jargalsaikhan, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. Parallel Algorithm for Pattern Matching Problems Under Substring Consistent Equivalence Relations. In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 28:1-28:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jargalsaikhan_et_al:LIPIcs.CPM.2022.28,
  author =	{Jargalsaikhan, Davaajav and Hendrian, Diptarama and Yoshinaka, Ryo and Shinohara, Ayumi},
  title =	{{Parallel Algorithm for Pattern Matching Problems Under Substring Consistent Equivalence Relations}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{28:1--28:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.28},
  URN =		{urn:nbn:de:0030-drops-161552},
  doi =		{10.4230/LIPIcs.CPM.2022.28},
  annote =	{Keywords: parallel algorithm, substring consistent equivalence relation, pattern matching}
}
Document
Sorting Balls and Water: Equivalence and Computational Complexity

Authors: Takehiro Ito, Jun Kawahara, Shin-ichi Minato, Yota Otachi, Toshiki Saitoh, Akira Suzuki, Ryuhei Uehara, Takeaki Uno, Katsuhisa Yamanaka, and Ryo Yoshinaka

Published in: LIPIcs, Volume 226, 11th International Conference on Fun with Algorithms (FUN 2022)


Abstract
Various forms of sorting problems have been studied over the years. Recently, two kinds of sorting puzzle apps are popularized. In these puzzles, we are given a set of bins filled with colored units, balls or water, and some empty bins. These puzzles allow us to move colored units from a bin to another when the colors involved match in some way or the target bin is empty. The goal of these puzzles is to sort all the color units in order. We investigate computational complexities of these puzzles. We first show that these two puzzles are essentially the same from the viewpoint of solvability. That is, an instance is sortable by ball-moves if and only if it is sortable by water-moves. We also show that every yes-instance has a solution of polynomial length, which implies that these puzzles belong to NP . We then show that these puzzles are NP-complete. For some special cases, we give polynomial-time algorithms. We finally consider the number of empty bins sufficient for making all instances solvable and give non-trivial upper and lower bounds in terms of the number of filled bins and the capacity of bins.

Cite as

Takehiro Ito, Jun Kawahara, Shin-ichi Minato, Yota Otachi, Toshiki Saitoh, Akira Suzuki, Ryuhei Uehara, Takeaki Uno, Katsuhisa Yamanaka, and Ryo Yoshinaka. Sorting Balls and Water: Equivalence and Computational Complexity. In 11th International Conference on Fun with Algorithms (FUN 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 226, pp. 16:1-16:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ito_et_al:LIPIcs.FUN.2022.16,
  author =	{Ito, Takehiro and Kawahara, Jun and Minato, Shin-ichi and Otachi, Yota and Saitoh, Toshiki and Suzuki, Akira and Uehara, Ryuhei and Uno, Takeaki and Yamanaka, Katsuhisa and Yoshinaka, Ryo},
  title =	{{Sorting Balls and Water: Equivalence and Computational Complexity}},
  booktitle =	{11th International Conference on Fun with Algorithms (FUN 2022)},
  pages =	{16:1--16:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-232-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{226},
  editor =	{Fraigniaud, Pierre and Uno, Yushi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2022.16},
  URN =		{urn:nbn:de:0030-drops-159867},
  doi =		{10.4230/LIPIcs.FUN.2022.16},
  annote =	{Keywords: Ball sort puzzle, recreational mathematics, sorting pairs in bins, water sort puzzle}
}
Document
Fast and Linear-Time String Matching Algorithms Based on the Distances of q-Gram Occurrences

Authors: Satoshi Kobayashi, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
Given a text T of length n and a pattern P of length m, the string matching problem is a task to find all occurrences of P in T. In this study, we propose an algorithm that solves this problem in O((n + m)q) time considering the distance between two adjacent occurrences of the same q-gram contained in P. We also propose a theoretical improvement of it which runs in O(n + m) time, though it is not necessarily faster in practice. We compare the execution times of our and existing algorithms on various kinds of real and artificial datasets such as an English text, a genome sequence and a Fibonacci string. The experimental results show that our algorithm is as fast as the state-of-the-art algorithms in many cases, particularly when a pattern frequently appears in a text.

Cite as

Satoshi Kobayashi, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. Fast and Linear-Time String Matching Algorithms Based on the Distances of q-Gram Occurrences. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.SEA.2020.13,
  author =	{Kobayashi, Satoshi and Hendrian, Diptarama and Yoshinaka, Ryo and Shinohara, Ayumi},
  title =	{{Fast and Linear-Time String Matching Algorithms Based on the Distances of q-Gram Occurrences}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{13:1--13:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.13},
  URN =		{urn:nbn:de:0030-drops-120878},
  doi =		{10.4230/LIPIcs.SEA.2020.13},
  annote =	{Keywords: String matching algorithm, text processing}
}
Document
DAWGs for Parameterized Matching: Online Construction and Related Indexing Structures

Authors: Katsuhito Nakashima, Noriki Fujisato, Diptarama Hendrian, Yuto Nakashima, Ryo Yoshinaka, Shunsuke Inenaga, Hideo Bannai, Ayumi Shinohara, and Masayuki Takeda

Published in: LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)


Abstract
Two strings x and y over Σ ∪ Π of equal length are said to parameterized match (p-match) if there is a renaming bijection f:Σ ∪ Π → Σ ∪ Π that is identity on Σ and transforms x to y (or vice versa). The p-matching problem is to look for substrings in a text that p-match a given pattern. In this paper, we propose parameterized suffix automata (p-suffix automata) and parameterized directed acyclic word graphs (PDAWGs) which are the p-matching versions of suffix automata and DAWGs. While suffix automata and DAWGs are equivalent for standard strings, we show that p-suffix automata can have Θ(n²) nodes and edges but PDAWGs have only O(n) nodes and edges, where n is the length of an input string. We also give O(n |Π| log (|Π| + |Σ|))-time O(n)-space algorithm that builds the PDAWG in a left-to-right online manner. As a byproduct, it is shown that the parameterized suffix tree for the reversed string can also be built in the same time and space, in a right-to-left online manner.

Cite as

Katsuhito Nakashima, Noriki Fujisato, Diptarama Hendrian, Yuto Nakashima, Ryo Yoshinaka, Shunsuke Inenaga, Hideo Bannai, Ayumi Shinohara, and Masayuki Takeda. DAWGs for Parameterized Matching: Online Construction and Related Indexing Structures. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 26:1-26:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{nakashima_et_al:LIPIcs.CPM.2020.26,
  author =	{Nakashima, Katsuhito and Fujisato, Noriki and Hendrian, Diptarama and Nakashima, Yuto and Yoshinaka, Ryo and Inenaga, Shunsuke and Bannai, Hideo and Shinohara, Ayumi and Takeda, Masayuki},
  title =	{{DAWGs for Parameterized Matching: Online Construction and Related Indexing Structures}},
  booktitle =	{31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)},
  pages =	{26:1--26:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-149-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{161},
  editor =	{G{\o}rtz, Inge Li and Weimann, Oren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.26},
  URN =		{urn:nbn:de:0030-drops-121512},
  doi =		{10.4230/LIPIcs.CPM.2020.26},
  annote =	{Keywords: parameterized matching, suffix trees, DAWGs, suffix automata}
}
  • Refine by Author
  • 4 Yoshinaka, Ryo
  • 3 Hendrian, Diptarama
  • 3 Shinohara, Ayumi
  • 1 Bannai, Hideo
  • 1 Fujisato, Noriki
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Pattern matching
  • 1 Mathematics of computing → Combinatorial algorithms

  • Refine by Keyword
  • 1 Ball sort puzzle
  • 1 DAWGs
  • 1 String matching algorithm
  • 1 parallel algorithm
  • 1 parameterized matching
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2020
  • 2 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail