4 Search Results for "Yu, Yuancheng"


Document
Track A: Algorithms, Complexity and Games
On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k

Authors: Timothy M. Chan, Qizheng He, and Yuancheng Yu

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in Õ(n^{3/2}) time. - We prove a lower bound of Ω(n^{4/3-δ}) for rectilinear discrete 3-center in 4D, for any constant δ > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in Õ(n^{8/5}) time. We also prove a lower bound of Ω(n^{3/2-δ}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is Õ(n^{7/4}). - We prove a lower bound of Ω(n^{2-δ}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(n^ω), if the matrix multiplication exponent ω is equal to 2. - We similarly prove an Ω(n^{k-δ}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ω = 2. - We also prove an Ω(n^{2-δ}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound.

Cite as

Timothy M. Chan, Qizheng He, and Yuancheng Yu. On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 34:1-34:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ICALP.2023.34,
  author =	{Chan, Timothy M. and He, Qizheng and Yu, Yuancheng},
  title =	{{On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{34:1--34:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.34},
  URN =		{urn:nbn:de:0030-drops-180868},
  doi =		{10.4230/LIPIcs.ICALP.2023.34},
  annote =	{Keywords: Geometric set cover, discrete k-center, conditional lower bounds}
}
Document
Track A: Algorithms, Complexity and Games
Faster Monotone Min-Plus Product, Range Mode, and Single Source Replacement Paths

Authors: Yuzhou Gu, Adam Polak, Virginia Vassilevska Williams, and Yinzhan Xu

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
One of the most basic graph problems, All-Pairs Shortest Paths (APSP) is known to be solvable in n^{3-o(1)} time, and it is widely open whether it has an O(n^{3-ε}) time algorithm for ε > 0. To better understand APSP, one often strives to obtain subcubic time algorithms for structured instances of APSP and problems equivalent to it, such as the Min-Plus matrix product. A natural structured version of Min-Plus product is Monotone Min-Plus product which has been studied in the context of the Batch Range Mode [SODA'20] and Dynamic Range Mode [ICALP'20] problems. This paper improves the known algorithms for Monotone Min-Plus Product and for Batch and Dynamic Range Mode, and establishes a connection between Monotone Min-Plus Product and the Single Source Replacement Paths (SSRP) problem on an n-vertex graph with potentially negative edge weights in {-M, …, M}. SSRP with positive integer edge weights bounded by M can be solved in Õ(Mn^ω) time, whereas the prior fastest algorithm for graphs with possibly negative weights [FOCS'12] runs in O(M^{0.7519} n^{2.5286}) time, the current best running time for directed APSP with small integer weights. Using Monotone Min-Plus Product, we obtain an improved O(M^{0.8043} n^{2.4957}) time SSRP algorithm, showing that SSRP with constant negative integer weights is likely easier than directed unweighted APSP, a problem that is believed to require n^{2.5-o(1)} time. Complementing our algorithm for SSRP, we give a reduction from the Bounded-Difference Min-Plus Product problem studied by Bringmann et al. [FOCS'16] to negative weight SSRP. This reduction shows that it might be difficult to obtain an Õ(M n^{ω}) time algorithm for SSRP with negative weight edges, thus separating the problem from SSRP with only positive weight edges.

Cite as

Yuzhou Gu, Adam Polak, Virginia Vassilevska Williams, and Yinzhan Xu. Faster Monotone Min-Plus Product, Range Mode, and Single Source Replacement Paths. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 75:1-75:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gu_et_al:LIPIcs.ICALP.2021.75,
  author =	{Gu, Yuzhou and Polak, Adam and Vassilevska Williams, Virginia and Xu, Yinzhan},
  title =	{{Faster Monotone Min-Plus Product, Range Mode, and Single Source Replacement Paths}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{75:1--75:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.75},
  URN =		{urn:nbn:de:0030-drops-141440},
  doi =		{10.4230/LIPIcs.ICALP.2021.75},
  annote =	{Keywords: APSP, Min-Plus Product, Range Mode, Single-Source Replacement Paths}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for Min-Distance Problems

Authors: Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, Nicole Wein, Yinzhan Xu, and Yuancheng Yu

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study fundamental graph parameters such as the Diameter and Radius in directed graphs, when distances are measured using a somewhat unorthodox but natural measure: the distance between u and v is the minimum of the shortest path distances from u to v and from v to u. The center node in a graph under this measure can for instance represent the optimal location for a hospital to ensure the fastest medical care for everyone, as one can either go to the hospital, or a doctor can be sent to help. By computing All-Pairs Shortest Paths, all pairwise distances and thus the parameters we study can be computed exactly in O~(mn) time for directed graphs on n vertices, m edges and nonnegative edge weights. Furthermore, this time bound is tight under the Strong Exponential Time Hypothesis [Roditty-Vassilevska W. STOC 2013] so it is natural to study how well these parameters can be approximated in O(mn^{1-epsilon}) time for constant epsilon>0. Abboud, Vassilevska Williams, and Wang [SODA 2016] gave a polynomial factor approximation for Diameter and Radius, as well as a constant factor approximation for both problems in the special case where the graph is a DAG. We greatly improve upon these bounds by providing the first constant factor approximations for Diameter, Radius and the related Eccentricities problem in general graphs. Additionally, we provide a hierarchy of algorithms for Diameter that gives a time/accuracy trade-off.

Cite as

Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, Nicole Wein, Yinzhan Xu, and Yuancheng Yu. Approximation Algorithms for Min-Distance Problems. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 46:1-46:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2019.46,
  author =	{Dalirrooyfard, Mina and Williams, Virginia Vassilevska and Vyas, Nikhil and Wein, Nicole and Xu, Yinzhan and Yu, Yuancheng},
  title =	{{Approximation Algorithms for Min-Distance Problems}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{46:1--46:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.46},
  URN =		{urn:nbn:de:0030-drops-106223},
  doi =		{10.4230/LIPIcs.ICALP.2019.46},
  annote =	{Keywords: fine-grained complexity, graph algorithms, diameter, radius, eccentricities}
}
Document
Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

Authors: Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams, Yinzhan Xu, and Yuancheng Yu

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
Since the introduction of retroactive data structures at SODA 2004, a major unsolved problem has been to bound the gap between the best partially retroactive data structure (where changes can be made to the past, but only the present can be queried) and the best fully retroactive data structure (where the past can also be queried) for any problem. It was proved in 2004 that any partially retroactive data structure with operation time T_{op}(n,m) can be transformed into a fully retroactive data structure with operation time O(sqrt{m} * T_{op}(n,m)), where n is the size of the data structure and m is the number of operations in the timeline [Demaine et al., 2004]. But it has been open for 14 years whether such a gap is necessary. In this paper, we prove nearly matching upper and lower bounds on this gap for all n and m. We improve the upper bound for n << sqrt m by showing a new transformation with multiplicative overhead n log m. We then prove a lower bound of min {n log m, sqrt m}^{1-o(1)} assuming any of the following conjectures: - Conjecture I: Circuit SAT requires 2^{n - o(n)} time on n-input circuits of size 2^{o(n)}. This conjecture is far weaker than the well-believed SETH conjecture from complexity theory, which asserts that CNF SAT with n variables and O(n) clauses already requires 2^{n-o(n)} time. - Conjecture II: Online (min,+) product between an integer n x n matrix and n vectors requires n^{3 - o(1)} time. This conjecture is weaker than the APSP conjectures widely used in fine-grained complexity. - Conjecture III (3-SUM Conjecture): Given three sets A,B,C of integers, each of size n, deciding whether there exist a in A, b in B, c in C such that a + b + c = 0 requires n^{2 - o(1)} time. This 1995 conjecture [Anka Gajentaan and Mark H. Overmars, 1995] was the first conjecture in fine-grained complexity. Our lower bound construction illustrates an interesting power of fully retroactive queries: they can be used to quickly solve batched pair evaluation. We believe this technique can prove useful for other data structure lower bounds, especially dynamic ones.

Cite as

Lijie Chen, Erik D. Demaine, Yuzhou Gu, Virginia Vassilevska Williams, Yinzhan Xu, and Yuancheng Yu. Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 33:1-33:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.SWAT.2018.33,
  author =	{Chen, Lijie and Demaine, Erik D. and Gu, Yuzhou and Williams, Virginia Vassilevska and Xu, Yinzhan and Yu, Yuancheng},
  title =	{{Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{33:1--33:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.33},
  URN =		{urn:nbn:de:0030-drops-88593},
  doi =		{10.4230/LIPIcs.SWAT.2018.33},
  annote =	{Keywords: retroactive data structure, conditional lower bound}
}
  • Refine by Author
  • 3 Xu, Yinzhan
  • 3 Yu, Yuancheng
  • 2 Gu, Yuzhou
  • 2 Williams, Virginia Vassilevska
  • 1 Chan, Timothy M.
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Lower bounds and information complexity
  • 1 Theory of computation → Shortest paths

  • Refine by Keyword
  • 1 APSP
  • 1 Geometric set cover
  • 1 Min-Plus Product
  • 1 Range Mode
  • 1 Single-Source Replacement Paths
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2018
  • 1 2019
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail