5 Search Results for "Zhao, Ye"


Document
Short Paper
Predicting visit frequencies to new places (Short Paper)

Authors: Nina Wiedemann, Ye Hong, and Martin Raubal

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Human mobility exhibits power-law distributed visitation patterns; i.e., a few locations are visited frequently and many locations only once. Current research focuses on the important locations of users or on recommending new places based on collective behaviour, neglecting the existence of scarcely visited locations. However, assessing whether a user will return to a location in the future is highly relevant for personalized location-based services. Therefore, we propose a new problem formulation aimed at predicting the future visit frequency to a new location, focusing on the previous mobility behaviour of a single user. Our preliminary results demonstrate that visit frequency prediction is a difficult task, but sophisticated learning models can detect insightful patterns in the historic mobility indicative of future visit frequency. We believe these models can uncover valuable insights into the spatial factors that drive individual mobility behaviour.

Cite as

Nina Wiedemann, Ye Hong, and Martin Raubal. Predicting visit frequencies to new places (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 84:1-84:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wiedemann_et_al:LIPIcs.GIScience.2023.84,
  author =	{Wiedemann, Nina and Hong, Ye and Raubal, Martin},
  title =	{{Predicting visit frequencies to new places}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{84:1--84:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.84},
  URN =		{urn:nbn:de:0030-drops-189794},
  doi =		{10.4230/LIPIcs.GIScience.2023.84},
  annote =	{Keywords: Human mobility, Visitation patterns, Place recommendation, Next location prediction}
}
Document
Short Paper
Understand the Geography of Financial Precarity in England and Wales (Short Paper)

Authors: Zi Ye and Alex Singleton

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Financial precarity is a growing and pressing issue in many countries, which refers to a precarious existence which lacks job security, predictability, and psychological or material welfare. Its negative effects can be observed in cognitive functioning, emotional stability and social inclusion. Financial precarity has been proved to be impacted by multifaceted factors ranging from poor quality, unpredictable work, unmanaged debt, insecure asset wealth and insufficient money and resource. However, the geographical variation of financial precarity and the embedded social-spatial inequalities remain understudied. This paper addresses this research gap by introducing a new geodemographic classification of financial precarity, which is developed from a series of small area measurements covering employment, income, asset, liability and lifestyle characteristics of neighbourhoods. The research is conducted within the spatial extent of England and Wales.

Cite as

Zi Ye and Alex Singleton. Understand the Geography of Financial Precarity in England and Wales (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 87:1-87:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ye_et_al:LIPIcs.GIScience.2023.87,
  author =	{Ye, Zi and Singleton, Alex},
  title =	{{Understand the Geography of Financial Precarity in England and Wales}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{87:1--87:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.87},
  URN =		{urn:nbn:de:0030-drops-189828},
  doi =		{10.4230/LIPIcs.GIScience.2023.87},
  annote =	{Keywords: Financial precarity, Geodemographic classification, Household finance, Financial Wellbeing}
}
Document
Compositional Verification of Interacting Systems Using Event Monads

Authors: Bohua Zhan, Yi Lv, Shuling Wang, Gehang Zhao, Jifeng Hao, Hong Ye, and Bican Xia

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
Large software systems are usually divided into multiple components that interact with each other. How to verify interacting components in a modular way is one of the major problems in formal verification. In many cases, interaction between components can be modeled asynchronously, where events are sent without requiring a response in order to continue with execution of the component. In this paper, we propose a lightweight, event-based framework for verification of components with asynchronous interaction. We define event monads and event systems, and a Hoare logic-style calculus for reasoning about them. The framework is implemented in Isabelle and applied to several case studies, including models for distributed computing, cache-coherence protocols, and verification of partition scheduling in a real-time operating system.

Cite as

Bohua Zhan, Yi Lv, Shuling Wang, Gehang Zhao, Jifeng Hao, Hong Ye, and Bican Xia. Compositional Verification of Interacting Systems Using Event Monads. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 33:1-33:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{zhan_et_al:LIPIcs.ITP.2022.33,
  author =	{Zhan, Bohua and Lv, Yi and Wang, Shuling and Zhao, Gehang and Hao, Jifeng and Ye, Hong and Xia, Bican},
  title =	{{Compositional Verification of Interacting Systems Using Event Monads}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{33:1--33:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.33},
  URN =		{urn:nbn:de:0030-drops-167420},
  doi =		{10.4230/LIPIcs.ITP.2022.33},
  annote =	{Keywords: Hoare Logic, Compositional Verification, Events}
}
Document
Invited Talk
Convex Optimization and Dynamic Data Structure (Invited Talk)

Authors: Yin Tat Lee

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
In the last three years, there are many breakthroughs in optimization such as nearly quadratic time algorithms for bipartite matching, linear programming algorithms that are as fast as Ax = b. All of these algorithms are based on a careful combination of optimization techniques and dynamic data structures. In this talk, we will explain the framework underlying all the recent breakthroughs. Joint work with Jan van den Brand, Michael B. Cohen, Sally Dong, Haotian Jiang, Tarun Kathuria, Danupon Nanongkai, Swati Padmanabhan, Richard Peng, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, Di Wang, Sam Chiu-wai Wong, Guanghao Ye, Qiuyi Zhang.

Cite as

Yin Tat Lee. Convex Optimization and Dynamic Data Structure (Invited Talk). In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.FSTTCS.2020.3,
  author =	{Lee, Yin Tat},
  title =	{{Convex Optimization and Dynamic Data Structure}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.3},
  URN =		{urn:nbn:de:0030-drops-132440},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.3},
  annote =	{Keywords: Convex Optimization, Dynamic Data Structure}
}
Document
Visual Simulation of Flow

Authors: Arie Kaufman and Ye Zhao

Published in: Dagstuhl Follow-Ups, Volume 1, Scientific Visualization: Advanced Concepts (2010)


Abstract
We have adopted a numerical method from computational fluid dynamics, the Lattice Boltzmann Method (LBM), for real-time simulation and visualization of flow and amorphous phenomena, such as clouds, smoke, fire, haze, dust, radioactive plumes, and air-borne biological or chemical agents. Unlike other approaches, LBM discretizes the micro-physics of local interactions and can handle very complex boundary conditions, such as deep urban canyons, curved walls, indoors, and dynamic boundaries of moving objects. Due to its discrete nature, LBM lends itself to multi-resolution approaches, and its computational pattern, which is similar to cellular automata, is easily parallelizable. We have accelerated LBM on commodity graphics processing units (GPUs), achieving real-time or even accelerated real-time on a single GPU or on a GPU cluster. We have implemented a 3D urban navigation system and applied it in New York City with real-time live sensor data. In addition to a pivotal application in simulation of airborne contaminants in urban environments, this approach will enable the development of other superior prediction simulation capabilities, computer graphics and games, and a novel technology for computational science and engineering.

Cite as

Arie Kaufman and Ye Zhao. Visual Simulation of Flow. In Scientific Visualization: Advanced Concepts. Dagstuhl Follow-Ups, Volume 1, pp. 246-258, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InCollection{kaufman_et_al:DFU.SciViz.2010.246,
  author =	{Kaufman, Arie and Zhao, Ye},
  title =	{{Visual Simulation of Flow}},
  booktitle =	{Scientific Visualization: Advanced Concepts},
  pages =	{246--258},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-939897-19-4},
  ISSN =	{1868-8977},
  year =	{2010},
  volume =	{1},
  editor =	{Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DFU.SciViz.2010.246},
  URN =		{urn:nbn:de:0030-drops-27080},
  doi =		{10.4230/DFU.SciViz.2010.246},
  annote =	{Keywords: Lattice Boltzmann Method, Amorphous phenomena, GPU Acceleration, Computational Fluid Dynamics, Urban Security}
}
  • Refine by Author
  • 1 Hao, Jifeng
  • 1 Hong, Ye
  • 1 Kaufman, Arie
  • 1 Lee, Yin Tat
  • 1 Lv, Yi
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Economics
  • 1 Applied computing → Transportation
  • 1 Computing methodologies → Neural networks
  • 1 Information systems → Geographic information systems
  • 1 Information systems → Location based services
  • Show More...

  • Refine by Keyword
  • 1 Amorphous phenomena
  • 1 Compositional Verification
  • 1 Computational Fluid Dynamics
  • 1 Convex Optimization
  • 1 Dynamic Data Structure
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2023
  • 1 2010
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail