3 Search Results for "Zink, Johannes"


Document
Coloring and Recognizing Mixed Interval Graphs

Authors: Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander Wolff, and Johannes Zink

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
A mixed interval graph is an interval graph that has, for every pair of intersecting intervals, either an arc (directed arbitrarily) or an (undirected) edge. We are particularly interested in scenarios where edges and arcs are defined by the geometry of intervals. In a proper coloring of a mixed interval graph G, an interval u receives a lower (different) color than an interval v if G contains arc (u,v) (edge {u,v}). Coloring of mixed graphs has applications, for example, in scheduling with precedence constraints; see a survey by Sotskov [Mathematics, 2020]. For coloring general mixed interval graphs, we present a min {ω(G), λ(G)+1}-approximation algorithm, where ω(G) is the size of a largest clique and λ(G) is the length of a longest directed path in G. For the subclass of bidirectional interval graphs (introduced recently for an application in graph drawing), we show that optimal coloring is NP-hard. This was known for general mixed interval graphs. We introduce a new natural class of mixed interval graphs, which we call containment interval graphs. In such a graph, there is an arc (u,v) if interval u contains interval v, and there is an edge {u,v} if u and v overlap. We show that these graphs can be recognized in polynomial time, that coloring them with the minimum number of colors is NP-hard, and that there is a 2-approximation algorithm for coloring.

Cite as

Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander Wolff, and Johannes Zink. Coloring and Recognizing Mixed Interval Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gutowski_et_al:LIPIcs.ISAAC.2023.36,
  author =	{Gutowski, Grzegorz and Junosza-Szaniawski, Konstanty and Klesen, Felix and Rz\k{a}\.{z}ewski, Pawe{\l} and Wolff, Alexander and Zink, Johannes},
  title =	{{Coloring and Recognizing Mixed Interval Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.36},
  URN =		{urn:nbn:de:0030-drops-193388},
  doi =		{10.4230/LIPIcs.ISAAC.2023.36},
  annote =	{Keywords: Interval Graphs, Mixed Graphs, Graph Coloring}
}
Document
Complexity of Scheduling Few Types of Jobs on Related and Unrelated Machines

Authors: Martin Koutecký and Johannes Zink

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
The task of scheduling jobs to machines while minimizing the total makespan, the sum of weighted completion times, or a norm of the load vector, are among the oldest and most fundamental tasks in combinatorial optimization. Since all of these problems are in general NP-hard, much attention has been given to the regime where there is only a small number k of job types, but possibly the number of jobs n is large; this is the few job types, high-multiplicity regime. Despite many positive results, the hardness boundary of this regime was not understood until now. We show that makespan minimization on uniformly related machines (Q|HM|C_max) is NP-hard already with 6 job types, and that the related Cutting Stock problem is NP-hard already with 8 item types. For the more general unrelated machines model (R|HM|C_max), we show that if either the largest job size p_max, or the number of jobs n are polynomially bounded in the instance size |I|, there are algorithms with complexity |I|^poly(k). Our main result is that this is unlikely to be improved, because Q||C_max is W[1]-hard parameterized by k already when n, p_max, and the numbers describing the speeds are polynomial in |I|; the same holds for R|HM|C_max (without speeds) when the job sizes matrix has rank 2. Our positive and negative results also extend to the objectives 𝓁₂-norm minimization of the load vector and, partially, sum of weighted completion times ∑ w_j C_j. Along the way, we answer affirmatively the question whether makespan minimization on identical machines (P||C_max) is fixed-parameter tractable parameterized by k, extending our understanding of this fundamental problem. Together with our hardness results for Q||C_max this implies that the complexity of P|HM|C_max is the only remaining open case.

Cite as

Martin Koutecký and Johannes Zink. Complexity of Scheduling Few Types of Jobs on Related and Unrelated Machines. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{koutecky_et_al:LIPIcs.ISAAC.2020.18,
  author =	{Kouteck\'{y}, Martin and Zink, Johannes},
  title =	{{Complexity of Scheduling Few Types of Jobs on Related and Unrelated Machines}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.18},
  URN =		{urn:nbn:de:0030-drops-133620},
  doi =		{10.4230/LIPIcs.ISAAC.2020.18},
  annote =	{Keywords: Scheduling, cutting stock, hardness, parameterized complexity}
}
Document
Simplification of Polyline Bundles

Authors: Joachim Spoerhase, Sabine Storandt, and Johannes Zink

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
We propose and study a generalization to the well-known problem of polyline simplification. Instead of a single polyline, we are given a set of l polylines possibly sharing some line segments and bend points. Our goal is to minimize the number of bend points in the simplified bundle with respect to some error tolerance δ (measuring Fréchet distance) but under the additional constraint that shared parts have to be simplified consistently. We show that polyline bundle simplification is NP-hard to approximate within a factor n^(1/3 - ε) for any ε > 0 where n is the number of bend points in the polyline bundle. This inapproximability even applies to instances with only l=2 polylines. However, we identify the sensitivity of the solution to the choice of δ as a reason for this strong inapproximability. In particular, we prove that if we allow δ to be exceeded by a factor of 2 in our solution, we can find a simplified polyline bundle with no more than 𝒪(log (l + n)) ⋅ OPT bend points in polytime, providing us with an efficient bi-criteria approximation. As a further result, we show fixed-parameter tractability in the number of shared bend points.

Cite as

Joachim Spoerhase, Sabine Storandt, and Johannes Zink. Simplification of Polyline Bundles. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 35:1-35:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{spoerhase_et_al:LIPIcs.SWAT.2020.35,
  author =	{Spoerhase, Joachim and Storandt, Sabine and Zink, Johannes},
  title =	{{Simplification of Polyline Bundles}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{35:1--35:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.35},
  URN =		{urn:nbn:de:0030-drops-122821},
  doi =		{10.4230/LIPIcs.SWAT.2020.35},
  annote =	{Keywords: Polyline Simplification, Bi-criteria Approximation, Hardness of Approximation, Geometric Set Cover}
}
  • Refine by Author
  • 3 Zink, Johannes
  • 1 Gutowski, Grzegorz
  • 1 Junosza-Szaniawski, Konstanty
  • 1 Klesen, Felix
  • 1 Koutecký, Martin
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Fixed parameter tractability
  • 1 Mathematics of computing → Graph theory
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 1 Bi-criteria Approximation
  • 1 Geometric Set Cover
  • 1 Graph Coloring
  • 1 Hardness of Approximation
  • 1 Interval Graphs
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail