5 Search Results for "dos Santos, Vinicius F."


Document
Minimum Separator Reconfiguration

Authors: Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We study the problem of reconfiguring one minimum s-t-separator A into another minimum s-t-separator B in some n-vertex graph G containing two non-adjacent vertices s and t. We consider several variants of the problem as we focus on both the token sliding and token jumping models. Our first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length sequence of slides transforming A into B. We additionally establish that the existence of a sequence of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly, we show that deciding if a sequence of at most 𝓁 jumps can transform A into B is an NP-complete problem. To complement this negative result, we investigate the parameterized complexity of what we believe to be the two most natural parameterized counterparts of the latter problem; in particular, we study the problem of computing a minimum-length sequence of jumps when parameterized by the size k of the minimum s-t-separators and when parameterized by the number 𝓁 of jumps. For the first parameterization, we show that the problem is fixed-parameter tractable, but does not admit a polynomial kernel unless NP ⊆ coNP/poly. We complete the picture by designing a kernel with 𝒪(𝓁²) vertices and edges for the length 𝓁 of the sequence as a parameter.

Cite as

Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden. Minimum Separator Reconfiguration. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{c.m.gomes_et_al:LIPIcs.IPEC.2023.9,
  author =	{C. M. Gomes, Guilherme and Legrand-Duchesne, Cl\'{e}ment and Mahmoud, Reem and Mouawad, Amer E. and Okamoto, Yoshio and F. dos Santos, Vinicius and C. van der Zanden, Tom},
  title =	{{Minimum Separator Reconfiguration}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.9},
  URN =		{urn:nbn:de:0030-drops-194288},
  doi =		{10.4230/LIPIcs.IPEC.2023.9},
  annote =	{Keywords: minimum separators, combinatorial reconfiguration, parameterized complexity, kernelization}
}
Document
Short Paper
Data Visualization for Learning Analytics Indicators in Programming Teaching (Short Paper)

Authors: Ranieri Alves dos Santos, Dalner Barbi, Vinicius Faria Culmant Ramos, and Fernando Alvaro Ostuni Gauthier

Published in: OASIcs, Volume 112, 4th International Computer Programming Education Conference (ICPEC 2023)


Abstract
Learning Analytics (LA) has the potential to transform the way we learn, work and live our lives. To reach its potential, it must be clearly defined, incorporated into institutional teaching-learning strategies and processes and practices. The main goal of this study is to list indicators to be used in learning analytics in programming teaching and how to expose their views. For the development of the indicator model, this study based on a qualitative analysis, using data visualization and business intelligence tools, in projects focused on Learning Analytics. As a result, four main indicators were mapped: accesses to the system, resources accessed, activities carried out and, performance in activities.

Cite as

Ranieri Alves dos Santos, Dalner Barbi, Vinicius Faria Culmant Ramos, and Fernando Alvaro Ostuni Gauthier. Data Visualization for Learning Analytics Indicators in Programming Teaching (Short Paper). In 4th International Computer Programming Education Conference (ICPEC 2023). Open Access Series in Informatics (OASIcs), Volume 112, pp. 10:1-10:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dossantos_et_al:OASIcs.ICPEC.2023.10,
  author =	{dos Santos, Ranieri Alves and Barbi, Dalner and Ramos, Vinicius Faria Culmant and Gauthier, Fernando Alvaro Ostuni},
  title =	{{Data Visualization for Learning Analytics Indicators in Programming Teaching}},
  booktitle =	{4th International Computer Programming Education Conference (ICPEC 2023)},
  pages =	{10:1--10:7},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-290-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{112},
  editor =	{Peixoto de Queir\'{o}s, Ricardo Alexandre and Teixeira Pinto, M\'{a}rio Paulo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2023.10},
  URN =		{urn:nbn:de:0030-drops-185069},
  doi =		{10.4230/OASIcs.ICPEC.2023.10},
  annote =	{Keywords: learning analytics, data visualization, learning indicators}
}
Document
Reducing the Vertex Cover Number via Edge Contractions

Authors: Paloma T. Lima, Vinicius F. dos Santos, Ignasi Sau, Uéverton S. Souza, and Prafullkumar Tale

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The Contraction(vc) problem takes as input a graph G on n vertices and two integers k and d, and asks whether one can contract at most k edges to reduce the size of a minimum vertex cover of G by at least d. Recently, Lima et al. [MFCS 2020, JCSS 2021] proved, among other results, that unlike most of the so-called blocker problems, Contraction(vc) admits an XP algorithm running in time f(d) ⋅ n^O(d). They left open the question of whether this problem is FPT under this parameterization. In this article, we continue this line of research and prove the following results: - Contraction(vc) is W[1]-hard parameterized by k + d. Moreover, unless the ETH fails, the problem does not admit an algorithm running in time f(k + d) ⋅ n^o(k + d) for any function f. In particular, this answers the open question stated in Lima et al. [MFCS 2020] in the negative. - It is NP-hard to decide whether an instance (G, k, d) of {Contraction(vc)} is a Yes-instance even when k = d, hence enhancing our understanding of the classical complexity of the problem. - Contraction(vc) can be solved in time 2^O(d) ⋅ n^{k - d + O(1)}. This XP algorithm improves the one of Lima et al. [MFCS 2020], which uses Courcelle’s theorem as a subroutine and hence, the f(d)-factor in the running time is non-explicit and probably very large. On the other hand, this shows that when k = d, the problem is FPT parameterized by d (or by k).

Cite as

Paloma T. Lima, Vinicius F. dos Santos, Ignasi Sau, Uéverton S. Souza, and Prafullkumar Tale. Reducing the Vertex Cover Number via Edge Contractions. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 69:1-69:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lima_et_al:LIPIcs.MFCS.2022.69,
  author =	{Lima, Paloma T. and dos Santos, Vinicius F. and Sau, Ignasi and Souza, U\'{e}verton S. and Tale, Prafullkumar},
  title =	{{Reducing the Vertex Cover Number via Edge Contractions}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{69:1--69:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.69},
  URN =		{urn:nbn:de:0030-drops-168671},
  doi =		{10.4230/LIPIcs.MFCS.2022.69},
  annote =	{Keywords: Blocker problems, edge contraction, vertex cover, parameterized complexity}
}
Document
Reducing Graph Transversals via Edge Contractions

Authors: Paloma T. Lima, Vinicius F. dos Santos, Ignasi Sau, and Uéverton S. Souza

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
For a graph parameter π, the Contraction(π) problem consists in, given a graph G and two positive integers k,d, deciding whether one can contract at most k edges of G to obtain a graph in which π has dropped by at least d. Galby et al. [ISAAC 2019, MFCS 2019] recently studied the case where π is the size of a minimum dominating set. We focus on graph parameters defined as the minimum size of a vertex set that hits all the occurrences of graphs in a collection ℋ according to a fixed containment relation. We prove co-NP-hardness results under some assumptions on the graphs in ℋ, which in particular imply that Contraction(π) is co-NP-hard even for fixed k = d = 1 when π is the size of a minimum feedback vertex set or an odd cycle transversal. In sharp contrast, we show that when π is the size of a minimum vertex cover, the problem is in XP parameterized by d.

Cite as

Paloma T. Lima, Vinicius F. dos Santos, Ignasi Sau, and Uéverton S. Souza. Reducing Graph Transversals via Edge Contractions. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lima_et_al:LIPIcs.MFCS.2020.64,
  author =	{Lima, Paloma T. and dos Santos, Vinicius F. and Sau, Ignasi and Souza, U\'{e}verton S.},
  title =	{{Reducing Graph Transversals via Edge Contractions}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.64},
  URN =		{urn:nbn:de:0030-drops-127346},
  doi =		{10.4230/LIPIcs.MFCS.2020.64},
  annote =	{Keywords: blocker problem, edge contraction, graph transversal, parameterized complexity, vertex cover, feedback vertex set, odd cycle transversal}
}
Document
Dual Parameterization of Weighted Coloring

Authors: Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva

Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)


Abstract
Given a graph G, a proper k-coloring of G is a partition c = (S_i)_{i in [1,k]} of V(G) into k stable sets S_1,..., S_k. Given a weight function w: V(G) -> R^+, the weight of a color S_i is defined as w(i) = max_{v in S_i} w(v) and the weight of a coloring c as w(c) = sum_{i=1}^{k} w(i). Guan and Zhu [Inf. Process. Lett., 1997] defined the weighted chromatic number of a pair (G,w), denoted by sigma(G,w), as the minimum weight of a proper coloring of G. The problem of determining sigma(G,w) has received considerable attention during the last years, and has been proved to be notoriously hard: for instance, it is NP-hard on split graphs, unsolvable on n-vertex trees in time n^{o(log n)} unless the ETH fails, and W[1]-hard on forests parameterized by the size of a largest tree. We focus on the so-called dual parameterization of the problem: given a vertex-weighted graph (G,w) and an integer k, is sigma(G,w) <= sum_{v in V(G)} w(v) - k? This parameterization has been recently considered by Escoffier [WG, 2016], who provided an FPT algorithm running in time 2^{O(k log k)} * n^{O(1)}, and asked which kernel size can be achieved for the problem. We provide an FPT algorithm running in time 9^k * n^{O(1)}, and prove that no algorithm in time 2^{o(k)} * n^{O(1)} exists under the ETH. On the other hand, we present a kernel with at most (2^{k-1}+1) (k-1) vertices, and rule out the existence of polynomial kernels unless NP subseteq coNP/poly, even on split graphs with only two different weights. Finally, we identify some classes of graphs on which the problem admits a polynomial kernel, in particular interval graphs and subclasses of split graphs, and in the latter case we present lower bounds on the degrees of the polynomials.

Cite as

Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{araujo_et_al:LIPIcs.IPEC.2018.12,
  author =	{Ara\'{u}jo, J\'{u}lio and Campos, Victor A. and Lima, Carlos Vin{\'\i}cius G. C. and Fernandes dos Santos, Vin{\'\i}cius and Sau, Ignasi and Silva, Ana},
  title =	{{Dual Parameterization of Weighted Coloring}},
  booktitle =	{13th International Symposium on Parameterized and Exact Computation (IPEC 2018)},
  pages =	{12:1--12:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-084-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{115},
  editor =	{Paul, Christophe and Pilipczuk, Michal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.12},
  URN =		{urn:nbn:de:0030-drops-102134},
  doi =		{10.4230/LIPIcs.IPEC.2018.12},
  annote =	{Keywords: weighted coloring, max coloring, parameterized complexity, dual parameterization, FPT algorithms, polynomial kernels, split graphs, interval graphs}
}
  • Refine by Author
  • 3 Sau, Ignasi
  • 2 Lima, Paloma T.
  • 2 Souza, Uéverton S.
  • 2 dos Santos, Vinicius F.
  • 1 Araújo, Júlio
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Information systems → Data analytics
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Graph algorithms analysis

  • Refine by Keyword
  • 4 parameterized complexity
  • 2 edge contraction
  • 2 vertex cover
  • 1 Blocker problems
  • 1 FPT algorithms
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2023
  • 1 2019
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail