Reproducible Research in Geoinformatics: Concepts, Challenges and Benefits (Vision Paper)

Authors Christian Kray , Edzer Pebesma , Markus Konkol , Daniel Nüst



PDF
Thumbnail PDF

File

LIPIcs.COSIT.2019.8.pdf
  • Filesize: 0.6 MB
  • 13 pages

Document Identifiers

Author Details

Christian Kray
  • Institute for Geoinformatics (ifgi), University of Münster, Germany
Edzer Pebesma
  • Institute for Geoinformatics (ifgi), University of Münster, Germany
Markus Konkol
  • Institute for Geoinformatics (ifgi), University of Münster, Germany
Daniel Nüst
  • Institute for Geoinformatics (ifgi), University of Münster, Germany

Acknowledgements

We would like to thank the participants of the ifgi 2.0 workshop in 2014.

Cite AsGet BibTex

Christian Kray, Edzer Pebesma, Markus Konkol, and Daniel Nüst. Reproducible Research in Geoinformatics: Concepts, Challenges and Benefits (Vision Paper). In 14th International Conference on Spatial Information Theory (COSIT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 142, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.COSIT.2019.8

Abstract

Geoinformatics deals with spatial and temporal information and its analysis. Research in this field often follows established practices of first developing computational solutions for specific spatiotemporal problems and then publishing the results and insights in a (static) paper, e.g. as a PDF. Not every detail can be included in such a paper, and particularly, the complete set of computational steps are frequently left out. While this approach conveys key knowledge to other researchers it makes it difficult to effectively re-use and reproduce the reported results. In this vision paper, we propose an alternative approach to carry out and report research in Geoinformatics. It is based on (computational) reproducibility, promises to make re-use and reproduction more effective, and creates new opportunities for further research. We report on experiences with executable research compendia (ERCs) as alternatives to classic publications in Geoinformatics, and we discuss how ERCs combined with a supporting research infrastructure can transform how we do research in Geoinformatics. We point out which challenges this idea entails and what new research opportunities emerge, in particular for the COSIT community.

Subject Classification

ACM Subject Classification
  • Information systems → Spatial-temporal systems
  • Information systems → Computing platforms
Keywords
  • vision paper
  • Geoinformatics
  • reproducibility
  • computational
  • spatial and temporal information
  • spatial data science
  • GI Science

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Nick Barnes. Publish your computer code: it is good enough. Nature News, 467(7317):753-753, October 2010. URL: https://doi.org/10.1038/467753a.
  2. Philip E. Bourne, Jessica K. Polka, Ronald D. Vale, and Robert Kiley. Ten simple rules to consider regarding preprint submission. PLOS Computational Biology, 13(5):e1005473, May 2017. URL: https://doi.org/10.1371/journal.pcbi.1005473.
  3. Jonathan B. Buckheit and David L. Donoho. WaveLab and Reproducible Research. In Anestis Antoniadis and Georges Oppenheim, editors, Wavelets and Statistics, number 103 in Lecture Notes in Statistics, pages 55-81. Springer New York, 1995. URL: https://doi.org/10.1007/978-1-4612-2544-7_5.
  4. Andy Cockburn, Carl Gutwin, and Alan Dix. HARK No More: On the Preregistration of CHI Experiments. In Proceedings of CHI 2018, pages 141:1-141:12, New York, NY, USA, 2018. ACM. URL: https://doi.org/10.1145/3173574.3173715.
  5. Joëlle Coutaz. User interface plasticity: Model driven engineering to the limit! In Proceedings of ACM EICS 2018, pages 1-8. ACM, 2010. Google Scholar
  6. David DiBiase, Alan M MacEachren, John B Krygier, and Catherine Reeves. Animation and the role of map design in scientific visualization. Cartography and geographic information systems, 19(4):201-214, 1992. URL: http://arxiv.org/abs/https://doi.org/10.1559/152304092783721295.
  7. David Donoho. 50 Years of Data Science. Journal of Computational and Graphical Statistics, 26(4):745-766, October 2017. URL: https://doi.org/10.1080/10618600.2017.1384734.
  8. Matt Duckham. GI Expertise. Transactions in GIS, 19(4):499-515, 2015. URL: https://doi.org/10.1111/tgis.12166.
  9. Steve M Easterbrook. Open code for open science? Nature Geoscience, 7(11):779, 2014. URL: https://doi.org/10.1038/ngeo2283.
  10. Esri. ArcGIS Pro product page. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview. Accessed April 15, 2019.
  11. Virginia Gewin. Data sharing: An open mind on open data. Nature, 529(7584):117-119, January 2016. URL: https://doi.org/10.1038/nj7584-117a.
  12. Simon Hettrick. It’s impossible to conduct research without software, say 7 out of 10 UK researchers. Software and research, 5:1536, 2014. Google Scholar
  13. Daniel S. Katz and Neil P. Chue Hong. Software Citation in Theory and Practice. In James H. Davenport, Manuel Kauers, George Labahn, and Josef Urban, editors, Mathematical Software – ICMS 2018, Lecture Notes in Computer Science, pages 289-296. Springer International Publishing, 2018. URL: https://doi.org/10.1007/978-3-319-96418-8_34.
  14. Markus Konkol and Christian Kray. In-depth examination of spatio-temporal figures in open reproducible research. Cartography and Geographic Information Science, 2018. URL: https://doi.org/10.1080/15230406.2018.1512421.
  15. Markus Konkol, Christian Kray, and Max Pfeiffer. Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and a reproduction study. International Journal of Geographical Information Science, pages 1-22, 2018. URL: https://doi.org/10.1080/13658816.2018.1508687.
  16. Alan M MacEachren and Menno-Jan Kraak. Research challenges in geovisualization. Cartography and geographic information science, 28(1):3-12, 2001. Google Scholar
  17. Florian Markowetz. Five selfish reasons to work reproducibly. Genome Biology, 16:274, 2015. URL: https://doi.org/10.1186/s13059-015-0850-7.
  18. MathWorks. Matlab product page. https://www.mathworks.com/products/matlab.html. Accessed April 15, 2019.
  19. Daniel Nüst, Carlos Granell, Barbara Hofer, Markus Konkol, Frank O Ostermann, Rusne Sileryte, and Valentina Cerutti. Reproducible research and GIScience: an evaluation using AGILE conference papers. PeerJ Preprints, 6:e26561v1, 2018. Google Scholar
  20. Daniel Nüst, Markus Konkol, Edzer Pebesma, Christian Kray, Marc Schutzeichel, Holger Przibytzin, and Jörg Lorenz. Opening the publication process with executable research compendia. D-Lib Magazine, 23(1/2), 2017. Google Scholar
  21. Daniel Nüst. Reproducibility Service for Executable Research Compendia: Technical Specifications and Reference Implementation, December 2018. URL: https://doi.org/10.5281/zenodo.2203844.
  22. Hyoungjoo Park and Dietmar Wolfram. An examination of research data sharing and re-use: implications for data citation practice. Scientometrics, 111(1):443-461, April 2017. URL: https://doi.org/10.1007/s11192-017-2240-2.
  23. Heather Piwowar. Altmetrics: Value all research products. Nature, 493:159, January 2013. URL: https://doi.org/10.1038/493159a.
  24. Heather Piwowar, Jason Priem, Vincent Larivière, Joan Pablo Alperin, Lisa Matthias, Bree Norlander, Ashley Farley, Jevin West, and Stefanie Haustein. The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. PeerJ, 6(e4375), February 2018. URL: https://doi.org/10.7717/peerj.4375.
  25. Heather A. Piwowar and Todd J. Vision. Data reuse and the open data citation advantage. PeerJ, 1:e175, October 2013. URL: https://doi.org/10.7717/peerj.175.
  26. Hardy Pundt and Fred Toppen. 20 Years of AGILE. In Arnold Bregt, Tapani Sarjakoski, Ron van Lammeren, and Frans Rip, editors, Societal Geo-innovation, pages 351-367. Springer, Cham, 2017. URL: https://doi.org/10.1007/978-3-319-56759-4_20.
  27. Ulrich Pöschl. Interactive open access publishing and public peer review: The effectiveness of transparency and self-regulation in scientific quality assurance. IFLA Journal, 36(1):40-46, March 2010. URL: https://doi.org/10.1177/0340035209359573.
  28. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. URL: https://www.R-project.org/.
  29. David A Randell, Zhan Cui, and Anthony G Cohn. A spatial logic based on regions and connection. KR, 92:165-176, 1992. Google Scholar
  30. Christoph Stasch, Simon Scheider, Edzer Pebesma, and Werner Kuhn. Meaningful spatial prediction and aggregation. Environmental Modelling & Software, 51:149-165, 2014. Google Scholar
  31. Mark D. Wilkinson et al.. Scientific Data, 3:160018, March 2016. URL: https://doi.org/10.1038/sdata.2016.18.
  32. Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, and Tracy K. Teal. Good enough practices in scientific computing. PLOS Computational Biology, 13(6):e1005510, June 2017. URL: https://doi.org/10.1371/journal.pcbi.1005510.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail