On the Size of Finite Rational Matrix Semigroups

Authors Georgina Bumpus, Christoph Haase , Stefan Kiefer, Paul-Ioan Stoienescu, Jonathan Tanner



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2020.115.pdf
  • Filesize: 0.65 MB
  • 13 pages

Document Identifiers

Author Details

Georgina Bumpus
  • University of Oxford, UK
Christoph Haase
  • University College London, UK
Stefan Kiefer
  • University of Oxford, UK
Paul-Ioan Stoienescu
  • University of Oxford, UK
Jonathan Tanner
  • University of Oxford, UK

Acknowledgements

The authors thank James Worrell for discussing [E. Hrushovski et al., 2018] with them.

Cite AsGet BibTex

Georgina Bumpus, Christoph Haase, Stefan Kiefer, Paul-Ioan Stoienescu, and Jonathan Tanner. On the Size of Finite Rational Matrix Semigroups. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 115:1-115:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ICALP.2020.115

Abstract

Let n be a positive integer and M a set of rational n × n-matrices such that M generates a finite multiplicative semigroup. We show that any matrix in the semigroup is a product of matrices in M whose length is at most 2^{n (2 n + 3)} g(n)^{n+1} ∈ 2^{O(n² log n)}, where g(n) is the maximum order of finite groups over rational n × n-matrices. This result implies algorithms with an elementary running time for deciding finiteness of weighted automata over the rationals and for deciding reachability in affine integer vector addition systems with states with the finite monoid property.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Discrete mathematics
  • Theory of computation → Algebraic language theory
  • Theory of computation → Quantitative automata
Keywords
  • Matrix semigroups
  • Burnside problem
  • weighted automata
  • vector addition systems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J. Almeida and B. Steinberg. Matrix mortality and the Černý-Pin conjecture. In Proceedings of Developments in Language Theory (DLT), pages 67-80, 2009. Google Scholar
  2. L. Babai, R. Beals, and D. Rockmore. Deciding finiteness of matrix groups in deterministic polynomial time. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 117-126, 1993. Google Scholar
  3. N. Berry, A. Dubickas, N. D. Elkies, B. Poonen, and C. Smyth. The conjugate dimension of algebraic numbers. The Quarterly Journal of Mathematics, 55(3):237-252, 2004. Google Scholar
  4. J. Berstel and C. Reutenauer. Rational Series and Their Languages, volume 12 of Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, 1988. Google Scholar
  5. M. Blondin, C. Haase, and F. Mazowiecki. Affine extensions of integer vector addition systems with states. In Proceedings of the International Conference on Concurrency Theory (CONCUR), pages 14:1-14:17, 2018. Google Scholar
  6. W. Burnside. On an unsettled question in the theory of discontinuous groups. The Quarterly Journal of Pure and Applied Mathematics, 33:230-238, 1902. Google Scholar
  7. J.W. Carlyle and A. Paz. Realizations by stochastic finite automata. Journal of Computer and System Sciences, 5(1):26-40, 1971. Google Scholar
  8. A. de Luca and S. Varricchio. Finiteness and Regularity in Semigroups and Formal Languages. Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, 1999. Google Scholar
  9. W. Feit. The orders of finite linear groups. Unpublished preprint. Google Scholar
  10. M. Fliess. Matrices de Hankel. Journal de Mathématiques Pures et Appliquées, 53:197-222, 1974. Google Scholar
  11. A. Freedman, R. N. Gupta, and R. M. Guralnick. Shirshov’s theorem and representations of semigroups. Pacific Journal of Mathematics, 181(3):159-176, 1997. Google Scholar
  12. S. Friedland. The maximal orders of finite subgroups in GL_n(ℚ). Proceedings of the American Mathematical Society, 125(12):3519-3526, 1997. Google Scholar
  13. E. S. Golod. On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk SSSR Ser. Mat., 28:273-276, 1964. Google Scholar
  14. E. S. Golod and I. R. Shafarevich. On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat., 28:261-272, 1964. Google Scholar
  15. C. Haase and S. Halfon. Integer vector addition systems with states. In Proceedings of Reachability Problems (RP), pages 112-124, 2014. Google Scholar
  16. L. A. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and System Sciences, 39(3):299-322, 1989. URL: https://doi.org/10.1016/0022-0000(89)90025-1.
  17. E. Hrushovski, J. Ouaknine, A. Pouly, and J. Worrell. Polynomial invariants for affine programs. In Proceedings of the Symposium on Logic in Computer Science (LICS), pages 530-539, 2018. Google Scholar
  18. G. Jacob. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices. Theoretical Computer Science, 5(2):183-204, 1977. Google Scholar
  19. R. Kannan and R. J. Lipton. The orbit problem is decidable. In Proceedings of the Symposium on Theory of Computing (STOC), pages 252-261, 1980. Google Scholar
  20. R. Kannan and R. J. Lipton. Polynomial-time algorithm for the orbit problem. Journal of the ACM, 33(4):808-821, 1986. Google Scholar
  21. I. Kaplansky. Fields and Rings. University of Chicago Press, second edition, 1972. Google Scholar
  22. S. Kiefer and C. Mascle. On finite monoids over nonnegative integer matrices and short killing words. In Proceedings of the International Symposium on Theoretical Aspects of Computer Science (STACS), pages 43:1-43:13, 2019. Google Scholar
  23. J. Kuzmanovich and A. Pavlichenkov. Finite groups of matrices whose entries are integers. The American Mathematical Monthly, 109(2):173-186, 2002. Google Scholar
  24. G. Lallement. Semigroups and combinatorial applications. John Wiley & Sons, 1979. Google Scholar
  25. A. Mandel and I. Simon. On finite semigroups of matrices. Theoretical Computer Science, 5(2):101-111, 1977. Google Scholar
  26. R. McNaughton and Y. Zalcstein. The Burnside problem for semigroups. Journal of Algebra, 34:292-299, 1975. Google Scholar
  27. M. Newman. Integral Matrices. Academic Press, 1972. Google Scholar
  28. I. Schur. Über Gruppen periodischer Substitutionen. In Sitzungsbericht Preuss. Akad. Wiss., pages 619-627, 1911. Google Scholar
  29. M. P. Schützenberger. On the definition of a family of automata. Information and Control, 4(2-3):245-270, 1961. Google Scholar
  30. B. Steinberg. Yet another solution to the Burnside problem for matrix semigroups. Canadian Mathematical Bulletin, 55(1):188-192, 2012. Google Scholar
  31. H. Straubing. The Burnside problem for semigroups of matrices. In L. J. Cummings, editor, Combinatorics on Words, pages 279-295. Academic Press, 1983. Google Scholar
  32. A. Weber and H. Seidl. On finitely generated monoids of matrices with entries in ℕ. Informatique théorique et Applications/Theoretical Informaties and Applications, 25:19-38, 1991. Google Scholar
  33. B. Weisfeiler. On the size and structure of finite linear groups. Unpublished preprint. URL: http://arxiv.org/abs/1203.1960.
  34. B. Weisfeiler. Post-classification version of Jordan’s theorem on finite linear groups. Proceedings of the National Academy of Sciences of the United States of America, 81:5278-5279, 1984. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail