Vanishing Spaces of Random Sets and Applications to Reed-Muller Codes

Authors Siddharth Bhandari , Prahladh Harsha , Ramprasad Saptharishi , Srikanth Srinivasan



PDF
Thumbnail PDF

File

LIPIcs.CCC.2022.31.pdf
  • Filesize: 0.73 MB
  • 14 pages

Document Identifiers

Author Details

Siddharth Bhandari
  • Simons Institute for the Theory of Computing, Berkeley, CA, USA
Prahladh Harsha
  • Tata Institute of Fundamental Research, Mumbai, India
Ramprasad Saptharishi
  • Tata Institute of Fundamental Research, Mumbai, India
Srikanth Srinivasan
  • Aarhus University, Denmark

Acknowledgements

We thank the anonymous referees for several helpful comments.

Cite AsGet BibTex

Siddharth Bhandari, Prahladh Harsha, Ramprasad Saptharishi, and Srikanth Srinivasan. Vanishing Spaces of Random Sets and Applications to Reed-Muller Codes. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.CCC.2022.31

Abstract

We study the following natural question on random sets of points in 𝔽₂^m: Given a random set of k points Z = {z₁, z₂, … , z_k} ⊆ 𝔽₂^m, what is the dimension of the space of degree at most r multilinear polynomials that vanish on all points in Z? We show that, for r ≤ γ m (where γ > 0 is a small, absolute constant) and k = (1-ε)⋅binom(m, ≤ r) for any constant ε > 0, the space of degree at most r multilinear polynomials vanishing on a random set Z = {z_1,…, z_k} has dimension exactly binom(m, ≤ r) - k with probability 1 - o(1). This bound shows that random sets have a much smaller space of degree at most r multilinear polynomials vanishing on them, compared to the worst-case bound (due to Wei (IEEE Trans. Inform. Theory, 1991)) of binom(m, ≤ r) - binom(log₂ k, ≤ r) ≫ binom(m, ≤ r) - k. Using this bound, we show that high-degree Reed-Muller codes (RM(m,d) with d > (1-γ) m) "achieve capacity" under the Binary Erasure Channel in the sense that, for any ε > 0, we can recover from (1-ε)⋅binom(m, ≤ m-d-1) random erasures with probability 1 - o(1). This also implies that RM(m,d) is also efficiently decodable from ≈ binom(m, ≤ m-(d/2)) random errors for the same range of parameters.

Subject Classification

ACM Subject Classification
  • Theory of computation → Error-correcting codes
Keywords
  • Reed-Muller codes
  • polynomials
  • weight-distribution
  • vanishing ideals
  • erasures
  • capacity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Emmanuel Abbe, Amir Shpilka, and Avi Wigderson. Reed-Muller codes for random erasures and errors. IEEE Trans. Inform. Theory, 61(10):5229-5252, 2015. (Preliminary version in 47th STOC, 2015). URL: https://doi.org/10.1109/TIT.2015.2462817.
  2. Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are hard to approximate. Comput. Complexity, 21(1):63-81, 2012. (Preliminary version in 13th RANDOM, 2009). https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-080/. URL: https://doi.org/10.1007/s00037-011-0020-6.
  3. Aidao Chen, Anindya De, and Aravindan Vijayaraghavan. Learning a mixture of two subspaces over finite fields. In Vitaly Feldman, Katrina Ligett, and Sivan Sabato, editors, Algorithmic Learning Theory (ALT), volume 132 of Proceedings of Machine Learning Research, pages 481-504, 2021. URL: http://arxiv.org/abs/2010.02841.
  4. Tali Kaufman, Shachar Lovett, and Ely Porat. Weight distribution and list-decoding size of Reed-Muller codes. IEEE Trans. Inform. Theory, 58(5):2689-2696, 2012. (Preliminary version in 1st ICS, 2010). URL: https://doi.org/10.1109/TIT.2012.2184841.
  5. Peter Keevash and Benny Sudakov. Set systems with restricted cross-intersections and the minimum rank of inclusion matrices. SIAM J. Discrete Math., 18(4):713-727, 2005. URL: https://doi.org/10.1137/S0895480103434634.
  6. Shrinivas Kudekar, Santhosh Kumar, Marco Mondelli, Henry D. Pfister, Eren Eren Şaşoğlu, and Rüdiger L. Urbanke. Reed-Muller codes achieve capacity on erasure channels. IEEE Trans. Inform. Theory, 63(7):4298-4316, 2017. (Preliminary version in 48th STOC, 2016). URL: https://doi.org/10.1109/TIT.2017.2673829.
  7. David E. Muller. Application of Boolean algebra to switching circuit design and to error detection. Trans. IRE Prof. Group Electron. Comput., 3(3):6-12, 1954. URL: https://doi.org/10.1109/IREPGELC.1954.6499441.
  8. Zipei Nie and Anthony Y. Wang. Hilbert functions and the finite degree Zariski closure in finite field combinatorial geometry. J. Comb. Theory, Ser. A, 134:196-220, 2015. URL: https://doi.org/10.1016/j.jcta.2015.03.011.
  9. Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme. Trans. IRE Prof. Group Inf. Theory, 4:38-49, 1954. URL: https://doi.org/10.1109/TIT.1954.1057465.
  10. Galen Reeves and Henry D. Pfister. Reed-Muller codes achieve capacity on BMS channels. (manuscript), 2021. URL: http://arxiv.org/abs/2110.14631.
  11. Alex Samorodnitsky. An upper bound on 𝓁_q norms of noisy functions. IEEE Trans. Inform. Theory, 66(2):742-748, 2020. URL: https://doi.org/10.1109/TIT.2019.2944698.
  12. Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk. Efficiently decoding Reed-Muller codes from random errors. IEEE Trans. Inform. Theory, 63(4):1954-1960, 2017. (Preliminary version in 48th STOC, 2016). URL: https://doi.org/10.1109/TIT.2017.2671410.
  13. Ori Sberlo and Amir Shpilka. On the performance of Reed-Muller codes with respect to random errors and erasures. In Shuchi Chawla, editor, Proc. 31st Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1357-1376, 2020. URL: https://doi.org/10.1137/1.9781611975994.82.
  14. Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379-423, 623-656, 1948. URL: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
  15. Victor K.-W. Wei. Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory, 37(5):1412-1418, 1991. URL: https://doi.org/10.1109/18.133259.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail